{"id":613,"date":"2013-01-01T01:11:00","date_gmt":"2013-01-01T01:11:00","guid":{"rendered":"http:\/\/localhost:8888\/cite\/2016\/02\/09\/systematic-design-of-blended-pbl-exploring-the-design-experiences-and-support-needs-of-pbl-novices-in-an-online-environment\/"},"modified":"2016-06-04T02:34:36","modified_gmt":"2016-06-04T02:34:36","slug":"systematic-design-of-blended-pbl-exploring-the-design-experiences-and-support-needs-of-pbl-novices-in-an-online-environment","status":"publish","type":"post","link":"https:\/\/citejournal.org\/volume-13\/issue-1-13\/general\/systematic-design-of-blended-pbl-exploring-the-design-experiences-and-support-needs-of-pbl-novices-in-an-online-environment","title":{"rendered":"Systematic Design of Blended PBL: Exploring the Design Experiences and Support Needs of PBL Novices in an Online Environment"},"content":{"rendered":"

 <\/p>\n

The current information age society needs people who can think critically and creatively and can effectively use ever-increasing amounts of data to solve ill-structured problems, to make decisions in the face of uncertainty, and to collaborate with other people. In response to the emerging needs of our society, the International Society for Technology in Education (ISTE) published National Educational Technology Standards (NETS) for students, teachers, and administrators. The NETS for Students (ISTE, 2007), in particular, included (a) creativity and innovation, (b) communication and collaboration, (c) research and information fluency, (d) critical thinking, problem solving, and decision making, (e) digital citizenship, and (f) technology operations and concepts.<\/p>\n

The Partnership for 21st Century Skills (2011) presented a set of skills needed by 21st-century graduates, which included learning and innovation skills, information, media, and technology skills, as well as life and career skills. Few would argue the assertion that the traditional teacher-centered instructional methods are incompatible with the evolving demands of the information age and often fail to equip students with 21st-century skills. The learner-centered instructional approaches, including problem-based learning (PBL), better meet the complex needs of the information age since they focus on developing real-life skills, such as collaboration, higher order thinking, and problem-solving skills, beyond knowledge acquisition (Bransford, Brown & Cocking, 2000; Cornelius-White & Harbaugh, 2009; McCombs & Whisler, 1997; Reigeluth, 1994).<\/p>\n

Research shows that many teachers are unfamiliar and uncomfortable with the new roles and responsibilities required by open-ended, learner-centered strategies (Land, 2000). Further, although teachers are learner centered in philosophy they are often teacher centered in actual practice. Becker (2000) pointed out that teachers are much more constructivist in philosophy than in actual practice. Research studies have documented incongruence between teachers\u2019 beliefs and practices (Lim & Chan, 2007; Peterson, 1990; Polly & Hannafin, 2011; Wilson, 1990).<\/p>\n

Recently, An and Reigeluth (2011) found that lack of knowledge about learner-centered instruction is one of the factors that prevent teachers from creating learner-centered classrooms, even though they are learner centered in philosophy. Most participants in their study indicated that they wanted to learn more about learner-centered instruction, especially practical strategies.<\/p>\n

This paper describes major challenges that PBL novices face as they design their first blended PBL lesson in an online environment and discusses implications for teacher professional development programs.<\/p>\n

Literature Review<\/strong><\/p>\n

Problem-Based Learning<\/p>\n

PBL was first developed in medical education in the 1960s in response to students\u2019 unsatisfactory clinical performance that resulted from the emphasis on memorization of factual knowledge in the traditional health science education (Barrows, 1986; Barrows & Tamblyn, 1980). PBL has become a primary instructional method in medical schools throughout the world, and it has also been adopted and used by other disciplines in higher education, including nursing, architecture, business administration, and education.<\/p>\n

Over the past few decades, PBL has gradually gained popularity in K-12 settings as well, and it has been used across various levels and subject areas (Goodnough & Hung, 2008; McGrath & Sands, 2004; Torp & Sage, 2002).<\/p>\n

PBL begins with the presentation of an authentic, complex, and ill-structured problem, around which all learning content is organized. Like most problems encountered in everyday life, ill-structured problems are complex, ill-defined, and open-ended. Unlike well-structured problems, they seldom have a single, correct, or best solution. They typically have multiple alternative solutions and multiple solution paths, and the actions needed to solve them are not readily apparent. Also, they often require the integration of several content domains (Jonassen, 1997, 2000).<\/p>\n

In PBL, students no longer passively receive content knowledge from the teacher. Instead, they actively identify learning issues and engage in self-directed learning and collaborative inquiry to solve the problem (Barrows, 2000; Hmelo-Silver, 2004; Savery, 2006; Savery & Duffy, 1995). If designed and implemented effectively, PBL can help students develop self-directed learning, problem-solving, higher order thinking, and collaboration skills, as well as deep understanding of subject matter content.<\/p>\n

Using a qualitative metasynthesis approach, Strobel and van Barneveld (2009) compared and contrasted the findings of the meta-analytical research on the effectiveness of PBL. Their results indicate that PBL is significantly more effective than traditional instruction when it comes to long-term knowledge retention, performance improvement, and satisfaction of students and teachers, whereas traditional approaches are more effective for short-term retention.<\/p>\n

Problem-based learning and project-based learning are frequently used as synonyms. In fact, they are similar in that both take a learner-centered approach and use authentic, real-world tasks. However, project-based learning is different from problem-based learning in that it focuses more on end products. According to Blumenfeld et al. (1991), projects have two essential components: a driving question or problem and activities that result in a series of artifacts or products. In project-based learning, students are usually provided with specifications for a desired end product, and the expected outcomes drive and shape the learning process. In problem-based learning, on the other hand, students play a greater role in setting the goals and outcomes for the problem. Problem-based learning helps students develop the ability to both define the problem and develop a solution (Buck Institute for Education, 2012; Savery, 2006).<\/p>\n

PBL and Blended Learning <\/strong><\/p>\n

Blended learning, an integration of face-to-face instruction and online instruction, is becoming more commonplace in schools. Students not only attend face-to-face classes, they also communicate and collaborate electronically outside of the classroom using course management tools such as BlackBoard, Desire2Learn, and Moodle. Blended learning has a number of features that are favorable for PBL. First, it provides students with a more flexible and constructivist learning environment where they can take control of their learning and work with rich and dynamic resources. In blended learning environments, students and teachers are freed from the time and space constraints of the traditional classroom. Second, blended learning promotes interactions and collaboration among students and the teacher by enabling them to communicate and collaborate with each other both inside and outside the classroom. This feature is also well suited for PBL in that it depends on collaborative learning.<\/p>\n

Finally, blended learning has the potential to provide students for whom English is a second language (ESL) or those who are shy in face-to-face environments with opportunities to actively participate in collaborative problem solving. Research has shown that ESL students tend to participate more online than they do in face-to-face settings (Al-Salman, 2009; Bonk & Graham, 2006; Bonk & King, 1998; Chong, 1998; Cooney, 1998; Gerbic, 2006, 2010).<\/p>\n

PBL and Teacher Education<\/strong><\/p>\n

PBL has become increasingly popular in teacher education since the 1980s (De Simone, 2008). It has been used in the preparation of preservice teachers (e.g., Butler & Wiebe, 2003; De Simone, 2008), as well as for the professional development of in-service teachers (e.g., Walker et al., 2011; Weizman et al., 2008).<\/p>\n

Research studies show that PBL has positive effects on teachers\u2019 pedagogical and problem solving skills. For example, Weizman and her colleagues (2008) examined the effectiveness of a PBL model of professional development that was intended to help in-service teachers examine problems of science content and pedagogy in a self-selected content area (e.g., Earth science). In their study, science teachers participated in a 2-week-long workshop followed by nine monthly meetings during one academic year. The results of their study showed that the PBL approach to professional development advanced teachers\u2019 pedagogical content knowledge (PCK), while content knowledge gains were limited to one group of teachers. Specifically, participants demonstrated positive change in two subcomponents of PCK: curriculum knowledge and knowledge of assessment. In terms of conceptual understanding, only one group, the Physics participants, demonstrated a noticeable increase, while the Earth Science and Life Science groups did not demonstrate a significant change in conceptual understanding.<\/p>\n

In a similar vein, De Simone (2008) examined the impact of PBL on prospective teachers\u2019 problem-solving abilities. The participants were prospective teachers enrolled in two classes in a teacher education program. One of the classes was experimental group; the other was the control group. The experimental group used PBL while the control group used a more traditional approach. The participants in the experimental group were significantly better than the control group in identifying the main issue, relating their solutions to the problem, and using multiple resources. PBL appeared to foster the participants\u2019 pedagogical problem solving skills.<\/p>\n

The literature reveals that teacher education and professional development programs have often used a PBL approach to prepare teachers to solve problems in the classroom. For example, teachers who participated in the PBL for Teachers model of professional development worked on problems designed to improve their content knowledge and teaching practices (Weizman et al., 2008). Relatively little attention has been given to how to prepare teachers to design a PBL lesson.<\/p>\n

PBL Problem Design<\/strong><\/p>\n

Designing effective problems is a critical part of PBL design and implementation. Ineffective PBL problems could undermine the effectiveness of PBL by having a negative influence on students\u2019 activation of prior knowledge, self-directed learning, generation of learning issues, and group processing (Dolmans, Gijselaers, Schmidt, & van der Meer, 1993; Gijselaers & Schmidt, 1990).<\/p>\n

Over the last few decades, a small number of researchers have provided guidelines for developing PBL problems (Barrows, 1986; Dolmans & Snellen-Balendong, 1997; Duch, 2001; Schmidt, 1983; Weiss, 2003). Pointing out that previous discussions and guidelines have been general and inadequate in guiding practitioners to design effective PBL problems, Hung (2006) recently proposed the 3C3R PBL problem design model, which consists of two classes of components: core components and processing components.<\/p>\n

Core components, which include content, context, and connection, are primarily concerned with the issues of appropriateness and sufficiency of content knowledge, contextualization, and integration and are used to support content and concept learning in a discipline. On the other hand, processing components, which include researching, reasoning, and reflecting, are used to support students\u2019 cognitive processes and problem solving skills.<\/p>\n

The 3C3R model addresses educators\u2019 concerns regarding sufficient content coverage in a PBL curriculum by emphasizing the importance of content knowledge acquisition as well as reasoning and problem solving skills. Hung argued, \u201cIt is a misconception that PBL trades content sufficiency for problem-solving skills development. On the contrary PBL values content knowledge acquisition\u201d(pp. 57-58).<\/p>\n

Based on the 3C3R model, Hung (2009) developed the nine-step problem design process to help practitioners apply the 3C3R model. The nine-step process consists of the following:<\/p>\n