{"id":1622,"date":"2002-03-01T01:00:00","date_gmt":"2002-03-01T01:00:00","guid":{"rendered":"http:\/\/localhost:8888\/cite\/2016\/02\/09\/article3-html-3\/"},"modified":"2018-10-09T13:41:50","modified_gmt":"2018-10-09T13:41:50","slug":"information-and-communications-technology-in-education-a-personal-perspective","status":"publish","type":"post","link":"https:\/\/citejournal.org\/volume-2\/issue-2-02\/seminal-articles\/information-and-communications-technology-in-education-a-personal-perspective","title":{"rendered":"Information and Communications Technology in Education: A Personal Perspective"},"content":{"rendered":"

Throughout my professional career I have worked, played, studied, taught, experienced, and learned about Information and Communications Technology (ICT) in Education. I have been an active participant in this field as it has slowly moved from infancy into early childhood. In this article, I will share some of the things that I have learned and that I think are particularly important. I will illustrate some of these things with personal stories and reflections. My goal is to help move the field of ICT in education out of its current early childhood phase.<\/p>\n

My first experience in the field of Information and Communications Technology (ICT) was in the summer of 1963, shortly after I received my doctorate in mathematics. My area of specialization was numerical analysis, and this involved developing computational methods for solving various types of math problems. In the summer of 1963 (nearly 40 years ago), I helped teach talented and gifted high school students who were learning about computers and computer mathematics. This remains one of my interest areas (see http:\/\/www.brainconnection.com<\/a>)<\/p>\n

In the summer of 1965 I taught a course for secondary school teachers in a National Science foundation (NSF) summer institute, and by the summer of 1966 I was running my own NSF summer institute for teachers. All of the summer institutes and other NSF programs that I have run have focused on uses of ICT in precollege education.<\/p>\n

My professional career has been one of learning and of sharing my learning. I have been fortunate in having job situations that supported this approach. I have held faculty appointments in mathematics at the University of Wisconsin, in engineering and mathematics at Michigan State University, and in mathematics, computer science, and education at the University of Oregon. In addition, I started the professional society that eventually became the International Society for Technology in Education (ISTE), and I headed that organization for 19 years.<\/p>\n

This document is divided into somewhat isolated pieces, but readers may find that some of the pieces tie together as they work to create meaning from the document. The organization of the document is fuzzy, as are the messages I am attempting to convey.<\/p>\n

Throughout my professional career I have had an increasingly broad range of interests. These can be thought of in terms of discipline areas such as mathematics, computer science, and education. Significant chunks of my professional career have been spent in each of these three fields.<\/p>\n

Or my interests can be thought of in terms of more general ideas, such as teaching, learning, problem solving, and research. The academic positions I have held have all allowed me considerable time to pursue these general ideas.<\/p>\n

In the next few sections of this document I explore some topics that I would like to share with you. Some of the topics will be illustrated through personal stories. Over the years, I have gradually come to understand that story telling is an important aspect of teaching.<\/p>\n

RESEARCH<\/p>\n

You have all heard the expression, “Don’t reinvent the wheel.” This is a profound idea. There are many problems that people want to solve. For some problems, once one person solves the problem, others need only imitate the solution. This is sometimes called the Einstein effect. For example, perhaps it was an “Einstein” living many thousands of years ago who invented the wheel. Others saw how useful the wheel was, learned to make wheels, and taught still others to make and use wheels.<\/p>\n

I view research as solving problems in a manner so that others can build upon the results-so that others do not have to reinvent the wheel. My initial research was in mathematics. As a mathematician I posed and solved some problems, wrote and published some papers, and achieved both promotion and tenure at the associate professor level. While at Michigan State University early in my teaching career, I also researched various methods used to teach freshman mathematics at that university.<\/p>\n

One of the key ideas in mathematical research is that a problem gets posed and solved. If the statement of the problem and the solution are carefully done, then that problem is solved once and for all. People have been able to depend on the correctness of the Pythagorean Theorem for more than 2,000 years.<\/p>\n

Imagine my surprise later in my career when I eventually began to read the research literature in education and ran into the idea of a metastudy. In essence, a number of studies are carried out on various versions of an education problem. A metastudy analyzes the results, attempting to discern results that others can build upon. However, what one typically finds is that the problem being studied is so complex and involves so many variables that no clearcut solution emerges. We pose such problems as, “What is the best way to teach a child to read?” At the same time that we know that a combination of nature and nurture makes every learner different. Thus, education problems are not solved once and for all. Moreover, changes in technology lead to changes in possible solutions to educational problems.<\/p>\n

Thus, my career as a researcher in mathematics and in education feels somewhat schizophrenic. My father was a research mathematician. One of his favorite statements was, “Either it is or it isn’t.” Fuzzy logic had not yet been invented back in those days. Fuzzy logic is now important in mathematics, engineering, and other fields. It helps to describe our research findings in education.<\/p>\n

My career as a researcher is thoroughly intertwined with those of a large number of master’s and doctorate students. In 1970, I created this country’s second master’s degree program in the field of computers in education. In 1971 a student asked me if the University of Oregon offered a doctorate in that field. After a brief discussion with Keith Acheson, a math education colleague in the College of Education, we decided the answer was “yes.” I think it was more than ten years before the dean of the College of Education realized that such a new program had been created and was graduating a large number of students. I have been the major professor or comajor professor of about 75 doctoral students in this field (along with five in mathematics). By and large I have been able to work with whatever area of interest the students have had. Thus, I have had the opportunity to work in a huge number of different aspects of the field of computers in education.<\/p>\n

COMPUTER SCIENCE<\/p>\n

I was one of three people who worked together to create the University of Oregon’s Computer and Information Science Department in 1969, and I served as chair of the department for its first six years. In those days I believed strongly in the importance of computer and information science and such topics as computer programming, artificial intelligence, computer graphics, and information retrieval. Although I didn’t have any undergraduate or graduate coursework in these areas, I eventually learned enough to teach a variety of such courses.<\/p>\n

During those years, a colleague of mine suggested that the most important ideas that were coming out of computer science in the 20th century were effective procedure<\/em> and procedural thinking<\/em>. A computer program can be thought of as being an effective procedure, even if it contains bugs and fails to solve the problem it was intended to solve. Procedural thinking is the type of thinking that one uses when developing computer programs and in making use of computer programs to solve problems.<\/p>\n

The early master’s degree and doctorate of computer in education programs at the University of Oregon required a substantial amount of computer and information science coursework. There was a considerable emphasis on the ideas of effective procedure and procedural thinking. I considered that to be one of the strengths of the programs. A number of my doctoral students went on to hold positions in the Computer and Information Science Department.<\/p>\n

To a large extent, this emphasis on computer science has disappeared from both the University of Oregon programs and from computer in education programs throughout the country. We are producing ICT master’s and doctoral students who tend to have very little knowledge in the field of computer and information science. This saddens me.<\/p>\n

SCIENCE OF TEACHING AND LEARNING (SoTL)<\/p>\n

In recent years I have become quite interested in the science of teaching and learning (SoTL). Bransford, Brown, and Cocking (1999) and Bruer (1993) provided excellent summaries of this field. Bruer’s book contains an example that resonates with me and helps to illustrate what SoTL means.<\/p>\n

One of my earliest memories is of my parents doing some gardening in our backyard, and my father asking me a question somewhat like “What is 9 plus 14?” I had no idea what the answer might be or how to solve such a problem. A few minutes later, however, I happened to walk past our picket fence, and it occurred to me that I could answer the question by counting pickets. I “discovered” counting on<\/em> as a way to solve such a problem. I was so excited that I ran to find my father to tell him my answer.<\/p>\n

Bruer’s book contains an example of research suggesting that perhaps one third of first graders have not discovered or been taught counting on prior to entering the first grade. This is a significant barrier to learning the arithmetic in the typical first grade curriculum. The SoTL intervention was to develop a short unit about the number line and counting on that could be taught to first grade students. Less that an hour of instructional time was required to make a significant difference in the mathematics education of many students who had not previously discovered or been taught these ideas.<\/p>\n

This research result and educational intervention illustrates a very important idea. Think for a moment about whether all first grade teachers are able to determine which, if any, of their students would benefit by such an intervention and which have the knowledge and skills to implement the intervention. We immediately see a major problem in our efforts to improve education. How can we “bring to scale” our educational research findings? How can we translate good research results into widespread practice?<\/p>\n

For the most part, we are not successful in doing so. The difficulty is that teacher knowledge and skill cannot be mass produced and mass distributed. Over the years I have done lots of staff development, written books and articles on staff development, and taught both courses and workshops on staff development. It is clear to me that staff development is a critical component of improving our education system.<\/p>\n

However, we need better ways to turn educational research into practice. ICT is a powerful aid to doing so. In addition, computers and computerized equipment are contributing significantly to progress in brain science. This helps explain my current interests in brain science, SoTL, and ICT in math education (Moursund, 2002).<\/p>\n

INTELLIGENCE<\/p>\n

Howard Gardner’s (1983) book on multiple intelligences had a significant impact on my thinking about teaching and learning. Both my father and mother taught in the mathematics department at the University of Oregon, and my father served as head of the department for about 30 years. It is clear that my father raised me to be a mathematician. My report card from early in the first grade indicated, “Now that we have hit numeration, David really shines.” It turned out that the combination of nature and nurture facilitated my getting a doctorate in mathematics and achieving some level of success as a research mathematician.<\/p>\n

I have a reasonably high level of logical\/mathematical intelligence from Howard Gardner’s multiple intelligences point of view. However, my spatial intelligence is below average. Spatial intelligence is considered to be very important for success in mathematics. But my other talents, supported by our formal and informal educational systems along with intrinsic and extrinsic motivation, allowed me to achieve success as a mathematician. I find this particularly interesting as our educational system continues to label children and pigeonhole them. The State of Oregon vocational tests that I took during my senior year of high school indicated that I should not seek a career in mathematics.<\/p>\n

Of course, I heard about the idea of IQ long before I graduated from high school. But it was only when I ran into Howard Gardner’s first book on multiple intelligences that I began to take a serious interest in this topic. The following definition appears in Moursund (1996, 2001) and is synthesized from the work of Howard Gardner, David Perkins, and Robert Sternberg.<\/p>\n

Intelligence is a combination of the ability to:<\/p>\n

1. Learn. This includes all kinds of informal and formal learning via any combination of experience, education, and training.<\/p>\n

2. Pose problems. This includes recognizing problem situations and transforming them into more clearly defined problems.<\/p>\n

3. Solve problems. This includes solving problems, accomplishing tasks, and fashioning products. It involves creativity and higher-order thinking skills.<\/p>\n

I find that this definition works well both in being a teacher and in being a computer-using educator. For example, ICT is a powerful aid to solving problems. Thus, Item 3 of the definition allows me to argue that computers make us more intelligent. In addition, ICT contributes SoTL.<\/p>\n

PROBLEM SOLVING<\/p>\n

In this document, I use the term problem solving in a broad sense. Thus, it includes activities such as accomplishing a task, making a decision, answering questions, and solving a problem.<\/p>\n

Problem solving has been a unifying theme of my professional work (Moursund, 1970). In my teaching and writing I make frequent use of the diagram of Figure 1.<\/p>\n

\"Aids<\/p>\n

Figure 1.<\/strong> Aids to problem solving<\/p>\n

The central focus in Figure 1 is a one-person or a multiperson team that wants to solve a problem. This team is assisted by mind tools, body tools, and the formal and informal education of the team members. This education includes learning to make effective use of the mind and body tools, as well as the (human) members of the team. Thus, we have a clear representation of three areas for focus in improving the capabilities of a problem solving team.<\/p>\n

ICT provides us with improved mind tools, body tools, and education. Moreover, ICT is an aid to integrating these three aspects of problem solving. For example, a mind tool or a body tool can contain intelligent computer-assisted learning (ICAL) that “just in time” can help members of the problem solving team learn to use the tools. If the ICAL is sufficiently intelligent, the instruction can take into consideration the specific problem to be solved. We see this in contextual help being built into software applications.<\/p>\n

One of the key ideas in problem solving is building on the previous work of others and one’s own previous work. Throughout my professional career I have studied, written, and taught about problem solving. One of the points I stress is that ICT provides a new way to build upon previous work. Some types of previous work can be stored in a “the ICT system can do it for you” form. ICT has allowed us to accumulate a huge number of computerized procedures and automated machines that can automatically solve certain types of problems.<\/p>\n

Our educational system is severely challenged by the pace of progress in these aspects of ICT. Much of our formal education still focuses on having people learn to do things that ICT systems can do much better than people. Some of this teaching and learning effort should be moved into domains in which people far outperform computers. I often use Figure 2 in discussing this idea in my teaching and writing.<\/p>\n

 <\/p>\n

\"ICT<\/p>\n

Figure 2.<\/strong> ICT versus people in solving problems<\/p>\n

I am particularly interested in identifying teaching\/learning situations in which an ITC system can readily outperform a teacher. A simple example is the contextual help built into a computer application. A teacher with a classroom of students-each using different components of a computer application and\/or different applications-cannot compete with this steadily improving computer capability.<\/p>\n

I will close this section with a story from my graduate school days. I was taking a course in complex variable, and we were using a text written by the course instructor. However, the professor kept giving us really hard homework problems that were not in his book. Finally, a student got up the courage to ask where these problems were coming from. The answer was that these were research problems from papers published about 30 years earlier.<\/p>\n

A little thinking about this helped me decide to do my dissertation work in numerical analysis. The recent advent of computers made posing and addressing new problems possible. At the same time, it made solving old problems in new ways possible. In some sense, I could skip over much of what had been done in the past, moving directly to the frontiers.<\/p>\n

This idea, of course, applies to all areas of human intellectual endeavor in which an ICT system is a powerful aid to representing and solving problems. It helps explain why many young people-often without advanced college degrees-have been so successful in the ICT field. They used their brainpower and the new tools to solve new problems, rather than spending so much time and effort learning to solve problems that had already been solved. Readers of this document may want to do some introspection about their own lines of scholarly activity!<\/p>\n

COST\/BENEFIT ANALYSIS<\/p>\n

Figure 3 portrays the balance between some of the obvious costs and benefits of making use of ICT in one’s professional and nonprofessional activities.<\/p>\n

 <\/p>\n

 <\/p>\n

 <\/p>\n

 <\/p>\n

\"Cost\/benefit<\/p>\n

Figure 3.<\/strong> Cost\/benefit balance<\/p>\n

At a conscious or subconscious level people make decisions all the time about how to use their personal resources such as money and time. This simple diagram helps explain why many teachers are not making significant use of ICT in their classrooms and in their other professional work. They face a severe shortage of time. Their perceptions of potential benefits to themselves and their students are not sufficient to tip the scale to the right.<\/p>\n

I can think of numerous personal examples in which I have made conscious or subconscious decisions that might be analyzed from a cost\/benefit point of view. For example, I know that I am relatively inept in dealing with computer hardware and software problems. The time and effort to gain the needed knowledge and skills is not forthcoming. Fortunately for me, my wife is highly skilled in this aspect of ICT.<\/p>\n

Thinking along these lines led me to write about compelling applications (Moursund, 2000) of ICT in education. These are applications that are so intrinsically motivating and intrinsically valuable to a teacher (or to someone else faced by the cost\/benefit decision) that the scale is heavily tipped to the right. Most teachers are not finding many compelling applications.<\/p>\n

LEARNING AND LEARNING THEORIES<\/p>\n

I have no recollection of every having heard about transfer of learning or about any learning theory other than behaviorism during my K-20 education and early years as a university faculty member. In retrospect, this makes a strong statement about our education system. What do we know about learning and learning to learn? Why don’t we place more emphasis on this topic in each course that students take? I would think that mathematics teachers would know quite a bit about how to learn mathematics and would share this knowledge with their students. But I do not recall ever receiving any explicit instruction in this area.<\/p>\n

I recall being rather impressed when I first learned about “near transfer” and “far transfer.” But this “theory” doesn’t seem to be very useful in teaching and learning. I was far more impressed when one of my doctoral students worked on “low road” and “high road” transfer. This theory appears relevant to teaching and learning. It helps explain why rote memory approaches to education do not work well, and why teaching a computer application such as a word processor at a keystroke level is not a good approach to facilitating learning that transfers.<\/p>\n

In more recent years, one of my doctoral students did his dissertation on cognitive learning theories. I have learned that constructivism and situated learning are all quite important in the field of ICT in education, and that there are many other learning theories (see http:\/\/otec.uoregon.edu\/cognitive_science.htm<\/a>).<\/p>\n

Figure 4 is a model of how a typical person learns to use a mind tool or a body tool. It is a “learn by doing” model. This model is supported by constructivism and by situated learning. Our formal educational system does only a modest job of following this model. People learning ICT on their own or on the job typically follow this model.<\/p>\n

 <\/p>\n

 <\/p>\n

\"Learning<\/p>\n

Figure 4.<\/strong> Learning to use a Mind or Body Tool<\/p>\n

The teaching\/learning model in Figure 4 is highly dependent on the individual learner obtaining feedback on when more learning may be needed. This feedback may come from self, peers, teachers, the tools being used, and so on. As more instructional intelligence is built into ICT systems, more feedback-as well as more contextual, just-in-time instruction-will occur. In ICT, aids to learning include peers, teachers, oneself, ICT systems, books, reference manuals, and so on. Learning from one’s colleagues and fellow students is quite common.<\/p>\n

INTELLIGENT COMPUTER-ASSISTED LEARNING<\/p>\n

When I first encountered the computer-assisted learning (CAL) work being done by Pat Suppes in the 1960s, I could not help but laugh. Very expensive computer systems were being used to teach students to do paper and pencil arithmetic. The computer system “knew” how to solve the problems that it was helping students learn to solve. Also, even in those days the computer was thousands as times as fast as students, as well as more accurate, at doing arithmetic. Handheld calculators were beginning to be reasonably priced.<\/p>\n

However, over the years my attitudes about and approach to CAL have changed. Here are a few reasons for my changing attitude:<\/p>\n

 <\/p>\n