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Access to maker technologies has catalyzed and amplified 
the possibilities for creating physical materials that are 
responsive to the needs of students. Opportunities for 
design and fabrication of original mathematics 
manipulatives have been incorporated into the teacher 
education program at Montclair State University. 
Participating preservice elementary teachers design and 
make original mathematics manipulatives. Three case 
studies examine ways in which this process enhances 
students’ mathematical reasoning, sense-making, and 
understanding. The designs created are made available 
through links to the open source Educational CAD Model 
Repository, enabling others to replicate the objects 
described. 
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The concept of making is not a new one; “people have been making things 
forever” (Halverson & Sheridan, 2014, p. 495). Teachers have been making 
things forever, too. What is new is that broader access to digital design and 
fabrication technologies has both catalyzed and amplified the possibilities 
for making educational classroom materials that are responsive to the 
particular needs of its students. 

Three objects to think with are presented in this article. These objects were 
designed and fabricated by future teachers of elementary mathematics 
with the goal of helping students learn a particular concept in a meaningful 
way. The teachers’ evaluations of the things they made are also shared, 
including explanations of what their students learned as they worked with 
those objects. These findings are presented in the hope that they will 
encourage others to make these things for themselves or for another 
teacher or learner. Better yet, this illustration of the power of thinking with 
physical objects in mathematics education may inspire others to design 
and make their own objects to think with. 

 

EDITORS’ NOTE: We are pleased to announce a new feature of the 
CITE Journal in this issue. We are establishing an open-source 
Educational CAD Model Repository that can be used to store designs 
for physical objects that can be fabricated using 3D printers, laser 
cutters, digital die cutters and other fabrication tools available in 
maker spaces. A new section of the journal, Objects to Think With: 
Educational Fabrication and Design, has also been added to take 
advantage of this new capability. This section of the journal is 
sponsored by the International Technology and Engineering 
Education Association (ITEEA), which joins the other five 
associations (AMTE, ASTE, ELATE / NCTE, CUFA / NCSS, and 
SITE) that jointly sponsor and publish the CITE Journal. 

We are equally pleased to copublish an inaugural article that 
demonstrates the potential of these new capabilities: "Learning 
Mathematics with Mathematical Objects: Cases of Teacher-Made 
Mathematical Manipulatives" by Steven Greenstein and Eileen 
Fernández. This article describes ways in which preservice elementary 
teachers design and fabricate original math manipulatives in their 
teacher education program at Montclair State University. These case 
studies examine ways in which this process enhances students’ 
mathematical reasoning, sense-making, and understanding. The 
authors share the designs the preservice teachers created, as well as 
the preservice teachers’ evaluations of the objects they made based on 
use with students. The cases described in the paper will be of interest 
to CITE-Math Education readers, providing insight into creative ways 
to use maker technologies to support preservice teachers’ awareness 
about use of physical objects to support student learning. 

 

https://citejournal.org/category/objects-to-think-with/
https://citejournal.org/category/objects-to-think-with/
https://citejournal.org/volume-23/issue-1-23/objects-to-think-with/learning-mathematics-with-mathematical-objects-cases-of-teacher-made-mathematical-manipulatives
https://citejournal.org/volume-23/issue-1-23/objects-to-think-with/learning-mathematics-with-mathematical-objects-cases-of-teacher-made-mathematical-manipulatives
https://citejournal.org/volume-23/issue-1-23/objects-to-think-with/learning-mathematics-with-mathematical-objects-cases-of-teacher-made-mathematical-manipulatives
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Manipulatives in Mathematics Education 

Manipulatives in mathematics education are physical tools that are 
designed to help students learn mathematical ideas. Although concepts 
are not inherently visible within them, it is their designer’s intention to 
embed those concepts in their design. For instance, a child without an 
understanding of place value is unlikely to see the base-10 relationship 
between the rods and units in a set of base-10 blocks (see Figure 1). But 
the intention is that as they progress through a deliberately designed 
sequence of activities with those blocks, the relationship becomes 
apparent: one “10” can be decomposed into 10 “ones”; 10 ones can be 
composed into one 10. Through this progression, 

• physical knowledge becomes conceptual knowledge (Kamii & 
Housman, 2000); 

• ideas are abstracted from their concrete referents (Bruner, 1966); 
• material artifacts become psychological tools to think with 

(Verillon & Rabardel, 1995); 
• engraved pieces of plastic become base-10 blocks. 

These and other common classroom manipulatives, including fraction 
strips, pattern blocks, and connecting cubes, are shown in Figure 1. 

Figure 1 
Base-10 Blocks, Fraction Strips, Pattern Blocks, and Connecting Cubes 

 

Rationales for the use of manipulatives in mathematics education tend to 
be grounded in a constructivist theory of learning (Piaget, 1970), since the 
proper use of manipulatives involves having students construct these ideas 
for themselves through active, hands-on manipulations of these physical 
tools. Indeed, as the theory goes, the power of manipulatives lies in their 
capacity to support the construction of abstract mathematical concepts 
from students’ sensorimotor engagement with concrete tools (Kamii & 
Housman, 2000; Vygotsky, 1978). 

Lately, perspectives on embodied learning (Lakoff & Núñez, 2000; 
Nathan, 2021; Thompson, 2007) have contributed to the discussion by 
extending the site of thinking beyond the head to throughout the body, 
theorizing the mind-body mechanisms through which cognitive structures 
arise from engagement with the full sensations of our experiences. Indeed, 
it might be hard to imagine how one’s images (Tall & Vinner, 1981) of 
fraction and place-value concepts, for example, could not constitute 
embodied actions of dividing, iterating, grouping, and trading. 

From an embodied perspective, even the most complex ideas are grounded 
in and emergent from the sensorimotor activity of bodily experiences in 
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the world. Thus, manipulatives can provide the experiential context for 
activities essential to students’ learning of mathematics. In a very real 
sense, making sense is that which we make of our senses. That being so, 
the manipulation of manipulatives constitutes the manipulation and 
making of one’s ideas. 

Froebel’s Gifts: The First Manipulatives 

A valuable insight may be gained from returning to the origins of 
manipulatives to appreciate their pedagogical potential. That is, the 
original designer of the physical tools that are now called manipulatives, 
Friedrich Froebel, had even loftier ambitions than helping students learn 
mathematics. Froebel was the German educator who is credited with 
inventing the concept of kindergarten. He believed that every child needed 
to be active and engaged in open and meaningful play. He also believed 
that every child should appreciate the harmony of forms and relationships 
found in nature (Provenzo, 2009), those of beauty (including symmetry, 
pattern, and order), knowledge (including the mathematical and scientific 
concepts of size, shape, and balance), and living things (including worldly 
things and events). Froebel assumed that there was a mathematical logic 
underlying these natural forms and relationships, so to cultivate children’s 
appreciation of them, he developed a series of materials called gifts (see 
Figure 2) that he hypothesized would be useful for teaching children their 
underlying logics. 

Figure 2 
A Collection of Froebel Gifts 

Copyright 2022 Red Hen Toys. Reprinted with permission. 
https://redhentoys.com/collections/froebel-education  

 

Froebel’s gifts convey in tangible form the theory and appeal of his model 
of educational play, and although his work predates talk of constructivism 
by at least a hundred years, his theory of how students learn through gift 
play sounds as if it emanates from the very same source: “Perception is the 

https://redhentoys.com/collections/froebel-education
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beginning and the preliminary condition for thinking. One’s own 
perceptions awaken one’s own conceptions, and these awaken one’s own 
thinking…” (Wiggin & Smith, 1895, p. 1). 

In accordance with that view, Froebel sought to develop “the right forms 
for awakening the higher senses of the child” (p. 6) to nature’s physical 
forms and to the connections among them. These were his gifts, and they 
include the same pattern blocks and geometric building blocks that are 
found in classrooms today. Artists and designers such as Le Corbusier, 
Frank Lloyd Wright (his mother was a Froebelian educator!), Paul Klee, 
Wassily Kandinsky, Buckminster Fuller, and Piet Mondrian say their 
aesthetic sensibilities were greatly influenced by their experiences with 
Froebel’s gifts in kindergarten (Provenzo, 2009). In order from left to right 
and top to bottom, selections of their work that are reminiscent of 
Froebel’s gifts appear in Figure 3. 

Figure 3 
Le Corbusier’s Pavilion, Wright’s Fallingwater, Klee’s Red Bridge, 
Kandinsky’s Black and Violet, Fuller’s Montreal Biosphere, and 
Mondrian’s Composition A. 

 

What is inspiring about a recall to the work of Froebel is that it is a 
reminder that knowing mathematics is not the ultimate goal of learning 
mathematics. It certainly was not for these artists and designers. On the 
contrary, for them, learning the natural forms and logic of mathematics 
through embodied engagement with manipulatives nurtured appreciable 
skills and dispositions that formed the contours of their life’s work. These 
are just some of the potential benefits students might glean from playing 
with manipulatives in their mathematics education. 

Making Manipulatives for Teaching and Learning 
Mathematics 

In our own work, we have explored the potential benefits that students 
preparing to be elementary teachers might glean from making (Halverson 
& Sheridan, 2014) new manipulatives. In their mathematics education 
coursework, the future teachers in our teacher preparation programs learn 
about how manipulatives can support a student’s learning. Naturally, that 



Contemporary Issues in Technology and Teacher Education, 23(1) 
 

108 
 

conversation involves considerations of both mathematics and teaching. 
Accordingly, we thought that a pedagogically genuine, open-ended, and 
iterative design experience centered on the making of an original physical 
mathematics manipulative might inform the kinds of conceptual and 
pedagogical thinking that would enable these future teachers to support 
and promote their students’ mathematical reasoning, sense-making, and 
understanding. We implemented this project in three sections of a 
mathematics content course for future teachers at Montclair State 
University, which is a midsized university designated as a Hispanic-
serving institution in the northeastern United States. 

In the remainder of this article, three examples of the manipulatives these 
future teachers made are presented. These presentations include the 
rationales for their designs, links to the relevant mathematical Common 
Core mathematical standards (CCSSO, 2010), and excerpts from an 
efficacy study implemented with a child that demonstrated the value of 
their manipulative for learning a mathematical idea. These manipulatives 
were designed in Tinkercad (Autodesk Inc., 2020) and printed with 
Polylactic Acid, a natural and recyclable material derived from renewable 
resources on Makerbot Replicator 3D printers. Links to digital printing 
files in an Educational CAD Model Repository are provided to enable 
others to replicate these objects. 

Case 1: The Fraction Orange 

Dolly (all student and teacher names are pseudonyms) designed a tool 
with affordances for the exploration of fraction concepts (CCSSM 
6.NS.A.1). Her Fraction Orange (Figure 4) is a sphere partitioned into two 
hemispheres; one hemisphere is further partitioned into fourths, eighths, 
and 16ths of the whole; the other into sixths and 18ths. She tested her tool 
in a problem-solving interview with an adult named Lyle in order to assess 
his understanding of fraction division. The problem she gave him was to 
find the value of ½ ÷ ¼. The meanings that Lyle assigned to pieces of the 
orange are identified in the photo on the right of Figure 4. 

Figure 4 
Dolly’s Fraction Orange 

The fabrication files for the Fraction Orange can be accessed through the 
Educational CAD Model Repository via the following link: 
https://educationalmanufacturing.org/model/fraction-orange/  

 

Lyle’s initial response was to implement the flip-and-multiply algorithm 
for fraction division, which yielded an answer of 2. Because Dolly was 

https://educationalmanufacturing.org/model/fraction-orange/
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interested in assessing what Lyle understood about fraction division, she 
asked him to find the solution with the orange next. Lyle interpreted the 
problem as “a half divided by a quarter” and then identified a half-piece 
and the two fourth-pieces that lay inside it. Lyle reasoned that the answer 
was 4. When Dolly pointed out that his answer did not match what his 
algorithm produced, Lyle experienced disequilibrium. He replied, “Uh oh. 
Why doesn’t that work?” At this point, Dolly realized she was not so sure 
of her own understanding of fraction division, either. She identified the 
half-piece and proposed this interpretation of the problem to Lyle: “And 
how many quarters go into a half?” This exchange followed: 

Lyle: [Pointed to ½ on the page where he had written his work] So this is 
half of a whole [then pointing to ¼ on the page], and this is a quarter of a 
whole. [He then turned his attention to the orange and pointed to the half-
piece] Half of a whole. [He pointed to each quarter-piece.] Quarter of a 
whole [pointing to the two quarter-pieces] is 2. 

Thus, Lyle appeared to be establishing that the number of quarter-pieces 
he identified, 2, is the answer to the posed problem, ½ ÷ ¼. 

Dolly: [pointing to the two quarter-pieces and agreeing with 
Lyle] Yeah, ‘cause there’s two quarters of a whole. 
Lyle: Yeah, that makes sense. 

Dolly and Lyle concluded their problem-solving activity satisfied 
with their achievement, as indicated in their final exchange:  

Dolly: Woo! We did it! 
Lyle: Yeah, but it was complicated. 
Dolly: [laughing] It was. 

In contrast to the procedural activity that Lyle enacted without a sense of 
what it meant to do so, his activity with the physical manipulative 
instigated a drive toward sense-making that culminated in an embodied 
understanding of fraction division. The orange’s affordances for the 
exploration of fraction division – parts of a whole that are embedded in 
other parts of the whole – were essential to Lyle’s sense making of the 
concept. 

Case 2: The Minute Minis 

Mia wanted to design a tool that she hoped would alleviate the anxiety that 
children often experience when they learn about fractions. Casey was 
interested in helping students learn how to tell time. When they realized 
that both of their designs featured partitioned circular shapes, they 
decided to work together to create Minute Minis (Figure 5). Minute Minis 
were designed to help students learn the abstract concept of time using 
concrete representations of fractions. Specifically, they wanted to help 
children in second grade use what they already know about telling time (to 
the nearest half hour; CCSSM 1.MD.B.3) to learn to tell time more 
precisely (in increments of 5 and 15 minutes; CCSSM 2.MD.C.7) while also 
learning the part-whole meaning of fractions (CCSSM 3.NF.A.1). 
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Minute Minis are essentially relabeled fraction circles: the whole in Figure 
5 is labeled 1 hour, the halves are each labeled 30 minutes, the fourths are 
labeled 15 minutes, and the 12ths are labeled 5 minutes. 

Figure 5 
Casey and Mia’s Minute Minis 

The Minute Minis fabrication files are in the Educational CAD Model Repository 
in several formats, including a 3D-printed version, a laser-cut version, and a 
cardstock version available as a PDF file. When the cardstock version is printed, 
students can cut out the pieces with scissors. The files in the repository are 
available through the following 
link:  https://educationalmanufacturing.org/model/minute-minis/  

 

Casey and Mia tested their manipulative with a 9-year-old named Rocco. 
They let him play with the Minute Minis for a while and then they gave 
him this task: “Rocco has 3 homework assignments. Each will take him 40 
minutes to complete. How many hours of homework does Rocco have?” 
Rocco’s initial response was, “120 minutes.” Knowing that Rocco prided 
himself on the speed of his mental math, Casey and Mia inferred that he 
found his solution by multiplying 40 and 3. In response, they asked him to 
slow down and reread the problem. After doing so, he responded, “Oh, I 
can’t do that.” Casey and Mia conjectured that Rocco might have been 
confused about how to convert minutes to hours, so they invited him to 
use their manipulatives to figure out a solution. 

First, Rocco made two groups of 40 minutes using one 30-minute piece 
and two 5-minute pieces per group (Figure 6, left). To make the third 
group of 40 minutes, he asked for another 30-minute piece. Upon learning 
that there were no more, he assumed he could not finish the problem. 
However, once prompted to see if he could make 40 minutes some other 
way, Rocco went back to work. 

Eventually, he figured out that he could use two 15-minute pieces to make 
30 minutes, and with two more 5-minute pieces, he was able to complete 
his third group of 40 minutes (Figure 6, center). Then, without prompting, 
Rocco moved the largest 30-minute pieces together to form 1 hour, and 
then the two 15-minute pieces and six 5-minute pieces to form a second 
hour (Figure 6, right).  Then he announced his answer, “2 hours.” 

 

https://educationalmanufacturing.org/model/minute-minis/
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Figure 6 
Rocco’s Work on the Homework Task 

 

 

When Casey and Mia designed their Minute Minis, they embedded them 
with time and fraction concepts. They did so because they hypothesized 
that their design would elicit a child’s thinking about those concepts so 
that they could further develop it. What Rocco’s problem solving revealed 
is that their design worked. That is, his manipulations of the Minute Minis 
opened a window into his understandings of time in terms of the parts (or 
minutes) of a whole (hour). And as evidenced by the apparent cognitive 
demand of the task and Rocco’s overcoming an obstacle on his path to a 
solution, those manipulations also supported the development of ideas 
about time and fractions that were unknown even to him. 

Case 3: The Decimal Snake 

Roda designed a tool that she wanted to use to teach a child about decimals 
and decimal comparison (CCSSM 5.NBT.A.3). Her Decimal Snake (Figure 
7) consists of 10 connected pieces, each of which is equally partitioned into 
10 parts. Thus, the snake can be used to represent 10ths of 10ths (or 
100ths) of a whole (i.e., any decimal value between 0.01 and 1). These 
design features constitute concepts of the whole and its decimal parts that 
Roda embedded into her design. 

Figure 7 
Roda’s Decimal Snake 

 
The fabrication files for the Decimal Snake can be accessed through the 

Educational CAD Model Repository via the following link: 
https://educationalmanufacturing.org/model/decimal-snake/ 

https://educationalmanufacturing.org/model/decimal-snake/
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Roda engaged a child named Greg in a problem-solving interview to 
evaluate the efficacy of her manipulative. At one point in the interview, she 
asked Greg to compare 5.5 and 5.47. (Note that it would not be possible to 
represent 5.47 given that the entire snake represents 1.) Greg responded, 
“5.47 is 5 and 47 hundredths, because it’s 3 hundredths away from 5 and 5 
tenths.” Because Roda was interested in assessing how well her tool can 
support Greg’s reasoning, she then asked him, “Use the tool to show me?” 

For the next 60 seconds, Greg struggled to locate 5.5 and 5.47 on the snake. 
Finally, he located 5.5 at what we would identify as 0.55; and then he 
located 5.47 at 0.47 (see Figure 8). Given that several minutes earlier Greg 
established that the entire snake is the “whole” and that each piece of the 
snake is one 10th of a whole, we inferred from his solution – locating 5.5 
at 0.55, and 5.47 at 0.47 – that he had unintentionally designated each 
piece of the snake as 1 (as opposed to 0.1) and each partition of a piece as 
0.1 (as opposed to 0.01). In doing so, he changed his designation of the 
entire snake from the whole (1) to 10, and consequently, each piece of the 
snake then represented 1. Thus, 5.5 would be located in the fifth partition 
of the fifth piece. 

Figure 8 
Greg Locating 5.5 and 5.47 

 

 

Roda’s next move aimed to help Greg identify and resolve his confusion. 
When she asked him to “show me one 10th,” he pointed to the first 10th 
piece. When she asked for “two 10ths,” he pointed to the second 10th piece. 
Then she asked, “Where is 5 and 5 10ths?” In doing so, she perturbed his 
thinking and provoked disequilibrium. Soon thereafter, Greg resolved it 
and declared, “Oh, wait! This [entire snake] is one whole! 5 and 5 10ths, 
you can’t even make it out of the snake!” 

In response to this unanticipated move in Greg’s activity, Roda leveraged 
an affordance of her tool – namely that each piece of the snake could 
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represent either a 10th of a whole or one of 10 wholes – and exploited it to 
support new ways of thinking for Greg as he resolved his confusion about 
the representational capacities of the tool. 

Roda: You need how many snakes to make 5.5? 
Greg: You need 5 – No, 6 snakes! 
Roda: How can we compare 5.5 and 5.47 using 1 snake? Is that 
possible? 
Greg: We can pretend that each piece is one snake. 

In this instance, Roda leveraged a conceptual design decision she 
embedded in her manipulative that enabled the user of the decimal snake 
to engage in conversations about the unit whole and its decimal parts. That 
decision allowed for flexibility in naming the unit whole in relation to the 
whole snake and its constituent pieces. Roda’s rationale for leveraging that 
feature of her design was a pedagogical one. Rather than correct Greg’s 
interpretation, she helped him reason through his interpretations to 
resolve the confusion for himself. 

In this respect, the snake’s capacity for flexible interpretations of 
quantities (i.e., pieces of the snake could be regarded as wholes, 10ths, and 
so forth) supported Roda’s intention to use the tool to reveal and respond 
to Greg’s thinking, a practice she values as a mathematics teacher. Worth 
noting, Roda did not plan for this conversation about the unit whole, nor 
had she anticipated it. Regardless, the manipulative she designed enabled 
her to do so. 

Conclusion 

The intent of this article was to convey “images of the possible” (Shulman, 
2004; p. 147) regarding the learning potential of things to think with in 
mathematics education. To spark the reader’s imagination about what 
might be possible, the foundational work of Froebel was described. 
Froebel designed manipulatives to nurture children’s appreciations of 
beauty, logic, and living things. Then, this space of natural forms and 
relationships was used to consider the case of teaching and learning 
mathematics. Three vignettes were presented in which teachers effectively 
used manipulatives they designed to help them teach a mathematical 
concept to a learner. In each of these vignettes, a learner was actively 
engaged in meaningful, mathematical play, just as Froebel and many 
others have endorsed (e.g., De Holton et al., 2001; Piaget, 1962; Steffe & 
Wiegel, 1994; Vygotsky, 1978). 

Amidst each learner’s play, they encountered a moment of disequilibrium. 
With the support of a teacher, the learner leveraged mathematical 
relationships embedded by the teacher within their tool to resolve the 
disequilibrium and persevere to learn mathematics. The flexible designs 
of the Fraction Orange and Decimal Snake enabled learners to freely 
assign their personal mathematical meanings to their attributes (i.e., the 
“half” of the Orange and the “whole” of the Snake). Subsequently, the 
learners relied on mathematical relationships among the parts of the 
manipulative that were consequential to those assignments to solve the 
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problem posed to them and, thereby, learn something new about fractions 
or decimals. 

In the case of the Minute Minis, the design constraint of too few 30-minute 
pieces required the learner to find an equivalent alternative (i.e., the 
substitution of two 15-minute pieces), which he did. This discovery, in 
turn, prompted valuable rearrangements of parts and wholes that 
culminated in a solution to the problem and in the child making a 
connection between the part-whole meaning of fractions and the part-
whole units of time. 

These findings are presented as an inspiration for others to try out these 
manipulatives in their own classrooms. Tinkercad tutorials and other 
resources to support this kind of work are available on the Re-making 
Mathematics website: teachermakers.montclair.edu. These new design 
and fabrication capabilities make it possible for teachers to design and 
make their own manipulatives to meet the special and particular needs of 
their students. 
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