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ABSTRACT 

Noticing students’ mathematical thinking is a complex, but 
important practice for preservice secondary mathematics 
teachers (PSMTs) to develop. This practice is further 
complicated when secondary students use technology, as it 
requires the dual and interconnected attention to students’ 
mathematical thinking and the ways they engage with the 
technology as they are learning. The purpose of this study was 
to examine how explicitly sharing a framework for noticing 
students’ mathematical thinking in technology-mediated 
learning environments and providing opportunities for practice 
supported PSMTs’ noticing. Pre- and post-video-based 
assessments were used to examine changes in PSMTs’ noticing 
as a result of engaging with the framework. The findings of this 
study suggest that using this framework to support PSMTs’ 
development of the teaching practice of noticing students’ 
thinking has promise, especially related to coordinating 
students’ written and spoken mathematical thinking with their 
technology engagement. 

 
 
 
 

Teaching is extremely complex. In every lesson teachers make thousands 
of decisions. Fundamental to those decisions is their taking in information 
about what is happening in the classroom at the moment — otherwise 
known as teacher noticing (Jacobs & Spangler, 2017). One way to support 
the development of teacher noticing is to provide teachers with 
frameworks to help guide their noticings and ultimately their decision 
making. 

The literature is rich with examples of the ways in which frameworks have 
supported preservice teachers learning to notice in mathematics 
classrooms. For example, Mitchell and Marin (2014) used an analysis 
framework to support preservice teachers noticing important aspects of 
mathematics, while Teuscher et al. (2017) used a framework to support 
preservice teachers noticing mathematically significant pedagogical 
opportunities. 

When students are working in technology-mediated learning 
environments (i.e., working on technology-enhanced mathematics tasks), 
the practice of teacher noticing is more challenging because teachers must 
pay attention not only to what students say or write but also to ways the 
technology contributes to student understanding (e.g., Chandler, 2017; 
Lovett et al., 2019; Walkoe et al., 2017; Wilson et al., 2011). 

Walkoe et al. (2017) noted this challenge and the need to support teachers 
in learning to “look for key student thinking practices ... through the lens 
of technology-mediated student work” (p. 67). Because of this additional 
complexity, this study sets out to investigate the ways in which preservice 
teachers engaged in noticing students’ mathematical thinking in 
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technology-mediated learning environments when introduced to a 
framework intended to support this noticing of students’ thinking. 

Background Literature 

To situate this work, we first drew from relevant literature on preservice 
teacher noticing of students’ mathematical thinking. We share here 
frameworks that have supported teachers in their development of teacher 
noticing and discuss teacher noticing within technology-mediated 
learning environments. 

Preservice Teacher Noticing 

Jacobs and Spangler (2017) described teacher noticing as “focusing 
attention on and making sense of what students do before actually 
responding to them” (p. 771). Teacher noticing is grounded in the work of 
Mason (2002), who stated that “every act of teaching depends on noticing: 
noticing what children are doing, how they respond, evaluating what is 
being said or done against expectations and criteria, and considering what 
might be said or done next” (p. 7). There is much to notice within a 
classroom. Due to this complexity, the importance of noticing students’ 
mathematical thinking is emphasized in the Association of Mathematics 
Teacher Educators’ (2017)  Standards for Preparing Teachers of 
Mathematics:“Well-prepared beginners commit themselves to noticing, 
eliciting, and using student thinking to assess student progress in 
understanding the mathematics and to adjust instruction in ways that 
further support and advance learning toward the intended learning goals” 
(p. 16). 

When studying teacher noticing, conceptualizations depend on the 
particular focus; are teachers noting everything they deem important 
within a lesson or are teachers noticing specific instances of student 
interactions or student thinking for a particular subject (Philipp et al., 
2014)? For the purposes of this study, we draw upon Jacobs et al.’s (2010) 
conceptualization of teacher noticing of students’ mathematical thinking, 
which comprises three interrelated skills: attending to students’ strategies, 
interpreting their understanding, and deciding how to respond on the 
basis of those understandings. 

Since noticing is such an important practice, much research has been 
completed studying teacher noticing of student thinking in various 
mathematical contexts, ranging from elementary preservice teachers’ 
noticing student’s early numeracy skills (Schack et al., 2013) to secondary 
preservice teachers’ noticing students’ statistical understanding of a line 
of best-fit task (Nagel et al., 2020). When working with developing 
preservice teachers’ noticing, various artifacts of student work have been 
considered. According to Jacobs and Spangler (2017) video cases are the 
most common choice (e.g., Jong et al., 2021; Krupa et al., 2017), but other 
artifacts include student written work (e.g., Dick, 2017), transcripts of 
student conversations (e.g., Dreher & Kuntze, 2015) or combinations of 
the two (e.g., Ivars et al., 2020). Regardless of the type of artifact, a 
commonality between these studies is a desire to help preservice teachers 
improve their noticing skills through exposure to student thinking.  
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Results considering improvement of preservice teacher noticing have been 
mixed (Amador et al., 2021). Noting simultaneously all aspects of student 
thinking is often difficult for preservice teachers. Despite the difficulty, one 
method that has shown some success in supporting preservice teachers’ 
noticing has been through decomposing the practice (Grossman et al., 
2009) through frameworks that break aspects of teacher noticing into 
component parts.  

Use of Frameworks 

The importance of integrating frameworks into preservice teacher 
education is emphasized in the Association of Mathematics Teacher 
Educators’ (2017) Standards for Preparing Teachers of Mathematics: 

An effective mathematics teacher preparation program ensures 
that practice-based experiences, including mathematics methods 
courses and equivalent learning experiences, provide candidates 
with experiences using tools and frameworks grounded in 
research to develop core pedagogical practices and pedagogical 
content knowledge for teaching mathematics. (p. 35) 

In line with this advice, researchers have studied how incorporating 
frameworks has supported preservice teacher noticing. For example, Ivars 
et al. (2020) provided preservice teachers (PTs) with a learning trajectory 
framework for the fraction concept to guide their noticing and found that 
the learning trajectory “provided PTs with a guide to talk about students’ 
mathematical understandings” (p. 543) and ultimately acted as a scaffold 
to support their noticing.  

In contrast, Moreno et al. (2021) provided preservice teachers with a 
learning trajectory they described as “research-based frameworks of 
children’s thinking” (p. 57) with an expressed goal of developing their 
noticing. They studied the ways in which the preservice teachers used the 
learning trajectory to notice students’ thinking of measurement and found 
the complexity of the learning trajectory was too much for the preservice 
teachers and did not lead to increased noticing. These studies show the 
need for careful selection of frameworks accessible to preservice teachers. 

Additional frameworks have been used in an attempt to scaffold the 
noticing practice. For example, Stockero and colleagues shared 
frameworks related to high-leverage instances of students’ mathematical 
thinking and found they supported their noticing of mathematically 
significant pedagogical opportunities (MOST framework; Leatham et al., 
2015; Stockero & VanZoest, 2013). Their most recent work showed the 
transferability of preservice teacher noticing using the MOST framework 
over time from coursework to student teaching experience (Stockero, 
2020). 

Though not only focused on teacher noticing, Santagata and Yeh (2016) 
provided preservice teachers with the Lesson Analysis Framework to guide 
their analysis of video cases, for which one aspect was attending to student 
mathematical thinking. They found that the framework supported the 
preservice teachers’ analysis. Similarly, Mitchell and Marin (2015) 
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provided the Mathematical Quality of Instruction (MQI) framework as a 
scaffold for preservice teachers’ noticing of salient features of classroom 
practice — one of which was noticing student thinking. They found that, 
while it took time for the preservice teachers to fully understand and apply 
the framework, overall “the MQI as an analysis framework supported 
participant ability to notice student thinking” (p. 573). 

In addition, Fisher et al. (2019) and Dick et al. (2021) provided Jacobs et 
al.’s (2010) framework as part of preservice teacher instruction with the 
express goal of helping preservice teachers focus on the differences 
between the three components of noticing. Fisher et al. began with the 
attend component and slowly developed preservice teachers’ noticing to 
next interpret and finally make instructional decisions. They found this 
process led to increases in preservice teacher attending and interpreting, 
but concluded, “The deciding component increases when the complexity 
increases” (p. 148). 

Given the promise of providing frameworks as a way to support the 
practice of preservice teacher noticing, for this study, we provided 
preservice teachers with a framework based on Jacobs et al. (2010) and 
adapted to include noticing students’ thinking in technology-mediated 
learning environments. 

Technology-Mediated Learning Environments 

In their synthesis of research on teacher noticing, Amador et al. (2021) 
noted that results show the practice of teacher noticing can be complex, 
especially for preservice and novice teachers. Teacher noticing gains 
additional complexity when students are working in technology-mediated 
learning environments. In such environments students use technologies 
“that can perform mathematical tasks and/or respond to the user’s actions 
in mathematically defined ways” (Dick & Hollebrands, 2011, p. xii). 

With these technologies, students can interact with objects through 
dragging and dynamically view the resulting changes (e.g., Desmos 
Graphing Calculator and GeoGebra). Research on these technologies has 
shown that they can help mediate student’s mathematical thinking (e.g., 
Arzarello et al., 2002; Baccaglini-Frank & Mariotti, 2010; Trouche & 
Drijvers, 2010). 

For example, Baccaglini-Frank and Mariotti (2010) studied high school 
students and asked them to conjecture about geometric shapes while 
exploring an open problem in a dynamic geometry environment. They 
found that noticing the students’ dragging schemes elucidated the 
students’ mathematical thinking. Similarly, Arzarello et al. (2002) found 
the way a student used the dynamic representations in Geometer’s 
Sketchpad to solve a problem revealed insight to their mathematical 
thinking. Both Baccaglini-Frank and Mariotti and Arzarello et al. 
commented on the usefulness of examining students’ technology 
engagement, which demonstrates the importance of the role of technology 
engagement when noticing students’ thinking in such environments.  
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Research into the ways teachers notice students’ mathematical thinking 
when they are working in technology-mediated learning environments is 
limited (e.g., Chandler, 2017; Wilson et al., 2011; Yeo & Webel, 2019). 
Chandler researched how preservice teachers noticed students’ thinking 
with written artifacts vs. technology-mediated artifacts and found that, 
overall, preservice teachers ignored the role of the technology in 
developing the students’ understanding and instead noticed similarly 
across the two task mediums. 

More recently, Yeo and Webel (2019) asked preservice teachers 
simultaneously to evaluate a dynamic mathematics technology and notice 
students’ thinking within a technology-mediated environment. They 
found that having preservice teachers first work with the technology 
helped them interpret student’s thinking related to “how students solved 
the task and how they engaged with different [dynamic] representations” 
(p. 1052) and assisted them in their evaluation of the technology itself. 

In our previous work, we studied preservice teacher noticing of students’ 
thinking in technology-mediated learning environments and found that 
not explicitly asking preservice teachers to notice the ways students 
engaged with the technology hindered their noticing (Lovett et al., 2019). 
Such findings illuminate the potential benefit preservice secondary 
mathematics teachers (PSMTs) may draw from explicit scaffolding on 
noticing student thinking within technology-mediated learning 
environments and led to this study that questions how a framework 
focused on noticing students’ mathematical thinking in such 
environments may support preservice teacher noticing. 

Conceptual Framework 

We framed this work using a framework for Noticing of Students’ 
Mathematical Thinking in Technology-Mediated Learning Environments 
(NITE; Bailey et al., 2021; Dick et al., 2021) as a means to support 
preservice teacher noticing. The NITE framework is an adaptation of 
Jacobs et al.’s (2010) professional noticing of students’ mathematical 
thinking framework. 

The NITE framework (Figure 1) acknowledges that all components of 
noticing are by their nature interrelated (Jacobs et al., 2010). The 
separation of “attention to and interpretation of students’ spoken and 
written mathematical thinking” from “attention to and interpretation of 
students’ engagement with the technology” is to highlight the importance 
of including the actions students take with the technology and see the 
results of these actions when attending to and interpreting students’ 
mathematical thinking. Thus, the arrows in the NITE framework indicate 
the importance of both the horizontal coordination of attention and 
interpretation as well as the vertical integration of both attention and 
interpretation. The “decide how to respond” component is separated from 
the other components for two reasons: (a) to indicate the importance of 
balancing insight gained from attending to and interpreting both students’ 
spoken and written mathematical thinking and their technology 
engagement when making instructional decisions and (b) when deciding 
how to respond, teachers must consider how to position the technology (or 
not) in their response to support the student in moving forward. 
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Figure 1 
Teacher Noticing of Student’s Work in a Tool-Mediated Learning 
Environment (The NITE Framework; Bailey et al., 2021; Dick et al., 
2021) 

 

 

To illustrate the coordination articulated by the NITE framework, an 
example is provided here that we will return to later in this paper. Consider 
a dynamic exploration task in which students were being introduced to the 
idea of a vertical asymptote. In this Desmos task, students used sliders to 
explore the parameters of rational functions and their effect on the 
number of vertical asymptotes a function has and their location. Students 
explored more complex rational functions as they moved through the 
activity (see Figure 2). At the end of the activity, students were asked to 
respond to the following questions: 

1. Based on what you have learned, how could you explain to a 
friend how to determine the number of vertical asymptotes a 
rational function might have? 

2. How would you explain how to find the location of those vertical 
asymptotes given the rational function? 

Imagine monitoring students as they are working in pairs on the activity. 
One pair, Eden and McKenzie (these are pseudonyms), used sliders to 
explore the parameters k, a, and b in the function 

 

and their effect on the location (and existence) of vertical asymptotes. A 
detailed transcript of what they did and said while they worked is provided 
in Figure 3. 
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Figure 2 
Snapshot of the Vertical Asymptote Desmos Activity 

 

Figure 3 
Transcript of Eden and McKenzie Working on the Vertical Asymptote 
Desmos Activity 

See Appendix for text version of transcript 
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Paying attention to what the students say, it is apparent that they have 
determined a way to find the location of a vertical asymptote for rational 
functions of the form in question. However, using the NITE framework to 
guide noticing, in the attend and interpret components of noticing in a 
technology-mediated learning environment, teachers should go beyond 
what they hear students say or see them write, and also consider their 
engagement with the technology. Doing this carefully might result in the 
noticing shown in Figure 4. Ultimately, the NITE framework highlights 
both the thinking that students can express through their technology 
engagement and what teachers can learn about their thinking by attending 
to it and, therefore, scaffolds the practice to support PSMTs focusing on 
all components.  

Figure 4 
Example of the NITE Framework 

 
 

Methods 

This study was situated within the context of a larger project that is 
creating a series of modules for mathematics teacher educators to use with 
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PSMTs to examine secondary students’ mathematical practices. We aimed 
to answer the following research question: How does explicitly sharing the 
NITE framework and providing opportunities for practice during a single 
course support PSMTs’ engagement with the individual noticing skills of 
attending to and interpreting students’ mathematical thinking in 
technology-mediated environments as well as their coordination of the 
two? 

Participants 

This study was situated in a course focused on teaching secondary 
mathematics with technology at a university in the southeast United States 
that occurred in spring 2020. The earlier portion of the course was carried 
out in person, and the latter was carried out remotely (a mixture of 
synchronous and asynchronous online settings) due to the COVID-19 
pandemic. While the transition to a virtual setting in the middle of the 
semester did change the structure of some of the course materials, it did 
not change the content of the course materials or plans for data collection. 

Eight of nine PSMTs enrolled in the course agreed to participate in the 
study. Unlike the typically female dominated population of U.S. teachers 
(National Center for Education Statistics, 2020), our group of PSMTs was 
evenly distributed across the gender binary (50% female identifying, 50% 
male identifying, 0% other). At the time of the study, all participants had 
successfully completed coursework at least through Calculus 2, were 
mathematics majors and secondary mathematics education minors, and 
were preparing to be high school mathematics teachers. The participants 
are referred to in this article using codes (i.e., PSMT 1). Additionally, we 
chose to use gender neutral pronouns (i.e., they/them), as our goal is not 
to highlight any similarities or differences across gender identification 
categories. 

Context of This Study 

To support PSMTs in their development of the practice of noticing 
students’ mathematical thinking in technology-mediated learning 
environments, we are in the process of designing curriculum materials 
that use the NITE framework and video cases of secondary students to 
deepen teachers’ understanding of students’ mathematical thinking while 
engaged in technology-mediated tasks. Guided by the tradition of design 
research in curriculum development (e.g., Clements, 2007; Cobb et al., 
2003), we are engaging in cycles of refinements based on feasibility and 
pilot testing of the materials as they are being developed. 

The first module introduced the NITE framework. PSMTs were provided 
with a 3-minute video clip of a pair of secondary students engaged in a 
Desmos activity, in which they used sliders to explore the parameters of a 
quadratic function in vertex form — that is, f(x) = a(x - h)2 + k. This clip 
was focused on the students’ exploration of parameter h. PSMTs watched 
the video and then were asked to attend to and interpret the students’ 
thinking. Next, each of the components of the NITE framework and the 
importance of coordinating among them were discussed in class. PSMTs 
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then watched the same clip again and refined their attend and interpret 
responses. 

As a whole class, we built upon the work of the small groups and created 
what we agreed were robust attend and interpret responses — fully 
coordinating students’ written and spoken mathematical thinking along 
with the ways they engaged with the sliders to describe and make sense of 
the effect parameter h has on the graph of the function. We wrapped up 
the module by sharing tips for effective attending and interpreting. 
Additionally, we discussed Thomas et al.’s (2015) conceptualization of how 
the practice of noticing students’ mathematical thinking is foundational to 
the Five Practices for Orchestrating Productive Mathematics Discussions 
(Smith & Stein, 2018), providing the bigger picture of what we were 
building toward across this course and others in the program. 

In addition to this introductory module, the project aims to develop six 
additional modules, each with a different mathematical focus. At the time 
of this study, tasks for four modules had been developed and were being 
piloted. The design of these tasks was guided by our design principles for 
examining student practices in technology-mediated learning 
environments (Lovett et al., 2020). Mathematical topics in the four 
modules included the concept of function, rate of change, and function 
families. 

In each module, PSMTs examined carefully selected video clips of pairs of 
secondary students working together on technology-based tasks (e.g., 
Desmos and GeoGebra). The question prompts that accompanied the 
videos were guided by the NITE framework, often beginning with a focus 
on attending and interpreting students’ thinking and later adding other 
practices that build on noticing (e.g., questioning, predicting, selecting, 
sequencing, and connecting). For example, one of the tasks was in the 
context of a Desmos activity named Function Carnival. PSMTs had 
completed the Function Carnival task in a prior lesson. 

Here, PSMTs watched a video of a pair of students working on a portion of 
the activity in which they were to draw the time vs. distance traveled graph 
for a car that was traveling along a curvy road. PSMTs collaborated in an 
interactive platform (i.e., GoReact) to tag moments in the video that they 
thought were mathematically important given the learning goals (see 
Figure 5). Next, PSMTs were asked to write up their interpretations of the 
students’ current understandings related to the learning goals (i.e., 
describing qualitatively the functional relationship between two quantities 
by analyzing a graph, describing qualitatively the functional relationship 
between quantities by analyzing a simulation of their interaction, and 
sketching a graph that exhibits the features of a function described 
through a simulation of the resulting action). While only a subset of the 
modules was piloted at this time, additional video-based tasks were used 
with the PSMTs throughout the semester in similar ways. These tasks 
included examining small groups of students working on technology-
based geometry and statistics tasks. 
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Figure 5 
PSMTs Collaborate to Attend to Students’ Mathematical Thinking on a 
Desmos Activity 

 

Data Sources and Collection 

To evaluate the usefulness of introducing the NITE framework to PSMTs, 
we created an identical pre- and postvideo case noticing assessment based 
on the example provided in the Framework section (see Figure 4) that 
focused on attending to and interpreting students’ spoken and written 
mathematical thinking and their technology engagement. Research has 
illustrated that PSMTs and practicing teachers often struggle with the skill 
of deciding how to respond (e.g., Dick, 2017; Jacobs et al., 2010), and the 
skill of deciding is even more complex for a task situated in a technology-
mediated learning environment. Given this complexity, for this 
assessment we decided to focus only on the ways in which PSMTs attended 
and interpreted. 

Data included the PSMTs written responses to the pre and post video case 
noticing assessment, which took place during the first and last weeks of 
the course. We collected eight responses on the preassessment and seven 
on the postassessment. The one PSMT who did not complete the 
postassessment was excluded from analysis. 

The identical pre- and postassessment included the video clip of Eden and 
McKenzie (see Figure 3 for the transcript) and written prompts for the 
PSMTs to answer. Prior to completing the preassessment and in line with 
the design principles, PSMTs engaged with the Desmos activity as a 
learner to provide context for the video clip they would later examine. 
Following their engagement as learners, the PSMTs watched the video clip 
and responded to two noticing prompts. The first prompt focused on 
attending to the students’ spoken and written mathematical thinking and 
engagement with the technology. The second prompt focused on 
interpreting the students’ understanding of vertical asymptotes: 
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1. Describe how the students determined the location of the vertical 
asymptote for a rational function of the form 

 

2. Interpret the students’ current understanding of vertical asymptotes. 
Provide evidence from the video to support your claims. 

Analysis 

Data were analyzed using a coding rubric (see Figures 6 and 7) designed 
based on the NITE framework (see Figure 1). Similar to the coding scheme 
used by Jacobs et al. (2010), the rubric included three levels of evidence 
(i.e., lacking, limited, and robust) on each of the four components in the 
framework, robust being aligned with the example in Figure 4. Since 
research indicates that the skills of attending and interpreting are 
interwoven (e.g., Superfine et al., 2017), we coded PSMT responses across 
both prompts. In other words, if students attended in their interpret 
response, it was coded as attending, and vice versa. 

Figure 6 
Rubric for Attending to Students’ Spoken and Written Mathematical 
Thinking and Technology Engagement 
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Figure 7 
Rubric for Interpreting Students’ Spoken and Written Mathematical 
Thinking and Technology Engagement  

 

 

We used an iterative process of refinement to achieve consistent 
application of the codes (as recommended in DeCuir-Gunby et al., 2011). 
We began by having the entire research team code a blinded PSMT 
response. All discrepancies were discussed until consensus was reached by 
the entire team. As needed, we refined the coding rubric to reflect the 
changes based on these conversations.  

Using the final coding rubric (see Figures 6 and 7), each remaining blinded 
PSMT response was coded by two researchers, and all discrepancies were 
discussed by the entire team until reconciled. After coding was complete, 
tables were created to summarize the frequencies of each evidence level on 
the pre- and postassessments, as well as tables to capture the PSMTs’ 
change in evidence level from the pre- to postassessment. Finally, we 
created tables to describe the coordination of attending to students’ 
spoken and written mathematical thinking and technology engagement 
and the coordination of the interpretation of students’ spoken and written 
mathematical thinking and technology engagement, as seen in Figure 4. 

Findings 

On the preassessment, the PSMTs in this study collectively demonstrated 
higher levels of evidence for the attention to and interpretation of students’ 
spoken and written mathematical thinking than the attention to and 
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interpretation of technology (see Table 1). With respect to the attention to 
spoken and written mathematical thinking, six PSMTs demonstrated at 
least limited evidence, and one demonstrated lacking evidence. Four 
PSMTs demonstrated at least limited evidence when interpreting the 
students’ spoken and written mathematical thinking, and three 
demonstrated lacking evidence. This result contrasts with three PSMTs 
and no PSMTs demonstrating at least limited evidence on the attention to 
and interpretation of technology engagement respectively. 

Table 1 
Summary of PSMTs’ Evidence Level on the Preassessment 

Evidence 
Level Attend Interpret 

 
Spoken and 

Written 
Mathematical 

Thinking 

Technology 
Engagement 

Spoken and 
Written 

Mathematical 
Thinking 

Technology 
Engagement 

Robust 1 0 2 0 

Limited 5 3 2 1 

Lacking 1 4 3 6 

 

On the postassessment, the PSMTs collectively demonstrated higher levels 
of evidence for the attention to students’ spoken and written mathematical 
thinking and attention to technology engagement (see Table 2). Similar to 
the preassessment, six PSMTs demonstrated at least limited evidence of 
attention to students’ spoken and written mathematical thinking, and one 
demonstrated lacking evidence. Notably, four of those PSMTs achieved 
robust evidence compared to only one on the preassessment. 

Table 2 
Summary of PSMTs’ Evidence Level on the Postassessment 

Evidence 
Level Attend Interpret 

 
Spoken and 

Written 
Mathematical 

Thinking 

Technology 
Engagement 

Spoken and 
Written 

Mathematical 
Thinking 

Technology 
Engagement 

Robust 4 0 0 0 

Limited 2 6 2 2 

Lacking 1 1 5 5 
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Six PSMTs demonstrated limited evidence of attention to technology 
engagement, and one of the PSMTs demonstrated lacking evidence. On the 
preassessment, four PSMTs demonstrated at least limited evidence of the 
interpretation of students’ spoken and written mathematical thinking, 
whereas only two did on the postassessment. While no PSMTs 
demonstrated at least limited evidence of the interpretation of technology 
engagement on the preassessment, two did on the postassessment. 

Through comparison of the rubric levels (i.e., lacking, limited, and robust 
evidence) of the pre- and postassessment, we documented level changes of 
PSMTs’ engagement with noticing students’ mathematical thinking in 
technology-mediated environments (see Table 3 for summary of results). 
The change in evidence levels revealed that PSMTs demonstrated the most 
growth in attending to students’ spoken and written mathematical 
thinking and attending to students’ technology engagement. We did not 
see parallel growth regarding the interpretation of students’ spoken and 
written mathematical thinking and the interpretation of students’ 
technology engagement. Looking across the PSMTs’ interpretation of 
spoken and written mathematical thinking, despite the stagnation or 
regression in evidence level from the pre- to postassessment, it is 
important to note that one PSMT demonstrated robust evidence for their 
interpret response on the preassessment, indicating that PSMTs may 
interpret the students’ mathematical thinking at a robust level. 

Table 3 
Summary of PSMTs’ Change in Coding Level From Pre- to 
Postassessment 

Change in 
Evidence 

Level From 
Pre-Post Attend Interpret 

 
Spoken and 

Written 
Mathematical 

Thinking 

Technology 
Engagement 

Spoken and 
Written 

Mathematical 
Thinking 

Technology 
Engagement 

Remained 
robust 

1 0 0 0 

Improvement 
in level 

3 3 0 1 

Same level 2 4 3 6 

Decline in 
level 

1 0 4 0 

 

With respect to interpreting the students’ technology engagement, none of 
the PSMTs demonstrated robust evidence. Thus, these findings show 
mixed results as to how explicitly sharing the NITE framework and 
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providing opportunities for PSMT practice supported their engagement 
with the individual noticing skills of attending to and interpreting 
students’ mathematical thinking in technology-mediated environments. 
In our discussion, we will address potential reasons for these findings. 

Since a teacher’s pedagogical response depends upon both attending to 
and interpreting students’ spoken and written mathematical thinking and 
students’ technology engagement, and how the two inform one another, in 
the sections that follow, we discuss the findings according to changes in 
the PSMTs’ coordination between students’ spoken and written 
mathematical thinking and technology engagement. We define 
coordination as having PSMTs demonstrate at least limited evidence on 
both attention to (or interpretation of) students’ spoken and written 
mathematical thinking and the attention to (or interpretation of) 
technology engagement. Full coordination occurs when PSMTs 
demonstrate robust attention to and robust interpretation of both 
students’ spoken and written mathematical thinking and technology 
engagement. This level of coordination is the goal because it depicts the 
students’ current understanding using all information available. 

Coordination of Attending 

Regarding PSMTs’ coordination between the attention to students’ spoken 
and written mathematical thinking and the attention to technology 
engagement, the PSMTs collectively demonstrated growth. Figure 8 
demonstrates that only two PSMTs demonstrated coordination on the 
preassessment (denoted in green on Figure 8); whereas, on the 
postassessment, five PSMTs demonstrated coordination. Two examples 
demonstrate where PSMTs went from no coordination on the 
preassessment to coordination on the postassessment. While these are 
both considered improvements, each includes a typical example of no 
coordination. 

Figure 8 
Comparison of PSMTs’ Coordination of Attend on the Pre- and 
Postassessment 

 

 

PSMT 1’s responses are an example of the improvement from no 
coordination on the preassessment (denoted in gray with an * on Figure 
8) to coordination on the postassessment (denoted in green with an *; see 
also Table 4). On the preassessment PSMT 1 demonstrated lacking 
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evidence of attention to students’ spoken and written mathematical 
thinking and limited evidence of attention to technology engagement. 
PSMT 1 did identify that the students arrived at a formula, but incorrectly 
identified the formula as negative a divided by b instead of negative 
b divided by a. Furthermore, PSMT 1 did not explicitly discuss how the 
students determined that only a and b affect the location of the asymptote, 
nor did they discuss the language used by the students. 

PSMT 1 did attend to four of the details for technology engagement. They 
noted that the students moved the sliders, that they began with slider 
b and then made changes to slider a, and that the students changed 
parameter k to 0 (therefore, implicitly indicating that k had no effect), and 
that the students tried different values for the parameters (i.e., “setting 
a to 0 and moved b and then set a to 0 and moved b”) to formulate an 
initial conjecture. However, because PSMT 1 made no explicit connections 
to the ways the technology helped the students make particular 
discoveries, there is no evidence of coordination. This conclusion can be 
drawn from PSMT 1’s vague language: “By doing that they finally figured 
out that a and b are closely related.” 

Table 4 
Quotations From PSMT 1’s Pre- and Postassessment 

Pre Post 

They started by setting a 
to 0 and moved and then 
set to 0 and moved a. By 
doing that they finally 
figured out that and are 
closely related when 
figuring out the vertical 
asymptote. … Eventually 
they realized that to find 
the vertical asymptote 
they got the equation of 
a/b and switch the sign… 
They left equal to 0 and 
would only change and 
within the problem to see 
that those variables are 
closely related to the 
vertical asymptotes. 

They first began by moving all three sliders until 
they realized that when they move ‘a’ slider to 0, 
the graph becomes a straight line. Then they 
began to move slider ‘b’ in which they 
determined that it causes the graph to move up 
and down. Then they set ‘k’ to 0 and moved both 
‘a’ and ‘b’ to determine that the asymptote moves 
when sliding the slider negatively and positively. 
By moving the sliders ‘a’ and ‘b’ they came to 
realize that ‘a’ is half of ‘b’ and that determines 
the location of the vertical asymptote. They 
determined that the vertical asymptote is the 
variable ‘b’ divided by the variable ‘a’… Then 
they came to the conclusion that the sign in front 
of the vertical asymptote is opposite sign of the 
division when they mention that they think “it’s 
one of those flippy thingys”. The students 
current understanding of vertical asymptotes is 
that it is variable ‘b’ divided by variable ‘a’ and 
the sign flipped. 

 

On the postassessment, PSMT 1 correctly attended to all three details of 
the students’ mathematical thinking (robust evidence) by identifying the 
formula that the students produced, taking note of the students’ language, 
and addressing that only a and b affect the location of the asymptote. 
PSMT 1 attended to the same four details of technology engagement as 
they did on the preassessment. However, most notably PSMT 1 
demonstrated coordination on the postassessment. PSMT 1 explicitly 
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discussed how the students’ manipulation of the sliders helped them 
determine which parameters determined the location of the vertical 
asymptote. 

Another example of the ways in which PSMTs improved in their noticing 
was PSMT 2, who also improved from no coordination on the 
preassessment (denoted in gray with a + on Figure 8) to coordination on 
the postassessment (denoted in green with a +). However, unlike the 
previous example, PSMT 2 demonstrated limited evidence of attention to 
students’ spoken and written mathematical thinking and lacking evidence 
of attention to technology engagement, on the preassessment (see Table 
5). PSMT 2 correctly noted that the students determined a procedure for 
finding the location of the vertical asymptote which only incorporated 
parameters a and b. Regarding technology engagement, they did mention 
that the students “figured out that it was not impacted by k” but did not 
explicitly connect this to the students’ technology engagement. PSMT 2 
did not take note of when or how the students used the technology to refine 
their understanding of which variables affect the location of the asymptote 
nor did they comment on how the students tested their conjectures using 
the technology. 

Table 5 
Quotations From PSMT 2’s Pre- and Postassessment 

Pre Post 

They first figured out that it 
was not impacted by …They 
knew from the graph that 
both and changed the vertical 
asymptote, it was just 
determining how they were 
connected. They figured out 
that it was and then changing 
the sign which is the 
equivalent to setting it equal 
to zero and solving the 
equation, they just didn’t 
know to solve the equation 
that way. 

At first the students didn’t think you could 
determine the asymptote with those numbers 
alone, and also thought and did the same 
thing, while moving all the sliders. When 
moving the sliders, they said that didn’t move 
the vertical asymptote, but and did. Then 
moving only and sliders, one student said she 
thought it could be because it wasn’t exactly 
or . Then, the other student noticed that 
which was was and the vertical asymptote 
was at . So, they determined it was by trying 
it multiple times with different numbers but 
giving it a negative which they referred to as 
“one of those weird flippy thingy’s” “I would 
tell my friend to divide ”. 

 

Again, we saw a stark contrast on PSMT 2’s postassessment, in which they 
demonstrated coordination with robust evidence of attention to students’ 
spoken and written mathematical thinking and limited evidence of 
attention to technology engagement. PSMT 2 attended to all three details 
of the students’ spoken and written mathematical thinking. PSMT 2 also 
explicitly noted how and when the students manipulated the sliders. 
Coordination between attention to the students’ spoken and written 
mathematical thinking and attention to technology engagement was 
evident throughout their response. For example, PSMT 2 made the 
connection between what the students did with the technology (e.g., tested 
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multiple values) to arrive at and ultimately refine their conjectures about 
the location of the vertical asymptote (e.g., revised b/a to the opposite of 
b/a). 

Coordination of Interpreting 

The findings regarding the PSMTs’ coordination between the 
interpretation of students’ spoken and written mathematical thinking and 
the interpretation of technology engagement did not demonstrate parallel 
growth to the coordination of attending (see Figure 9). The majority of 
PSMTs did not demonstrate coordination. In fact, none of the PSMTs 
demonstrated coordination on the postassessment. PSMT 3’s responses 
(denoted on Figure 9 with a ~) are a typical example of no coordination 
between the interpretation of students’ spoken and written mathematical 
thinking and the interpretation of technology engagement. PSMT 3 
demonstrated limited evidence of the interpretation of students' spoken 
and written mathematical thinking and lacking evidence of the 
interpretation of technology engagement on the preassessment (see Table 
6). PSMT 3 indicated that the students understood that the location of a 
vertical asymptote can be determined by “b/a, then flip the sign.” 

Figure 9 
Comparison of PSMTs’ Coordination of Interpret on the Pre- and 
Postassessment 

 

 

PSMT 3 also explained that while the students arrived at the correct 
formula there was no evidence that they made the connection to setting 
the denominator equal to 0 to figure out why there was an opposite sign in 
their formula. While PSMT 3 noted that the students used the technology 
in specific ways, such as using trial and error to test their conjectures, 
PSMT 3 did not explicitly indicate how the technology was used nor did 
they interpret how these actions informed their understanding, which 
shows a lack of coordination. 
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Table 6 
Quotations from PSMT 3’s Pre- and Postassessment 

Pre Post 

The students used trial and error until 
they noticed a pattern, then tested any 
patterns they found. They landed on b/a, 
then flip the sign. This is the correct 
method for finding the asymptote, as it is 
equivalent to solving the equation 
ax+b=0. The students used trial and error 
to see which parameter would affect the 
asymptote. The students determined that 
k did not affect the location of the 
asymptote, and focused on a and b. Their 
formula for the vertical asymptote is 
correct, though it seemed their 
understanding of why was lacking. The 
two used terms like “flippy thingy” which 
seemed two show a lack of understanding 
why the ratio defining the asymptote had 
the opposite sign of what they expected. 

The students used trial and error 
to see which parameter would 
affect the asymptote. The 
students determined that k did 
not affect the location of the 
asymptote, and focused on a and 
b… By the end of the activity, 
students determined the correct 
equation for the vertical 
asymptote, x = -ba. This was 
shown when they determined 
and stated that the asymptote 
was -x = ba, which is equivalent. 

 

On the postassessment, PSMT 3 again noted that the student understood 
the procedure for the location of the vertical asymptote. However, this 
time PSMT 3 did not mention the lack of evidence for a connection to the 
denominator of the rational function. Similar to the preassessment, 
because PSMT 3 did not interpret how the students’ technology use 
informed their understanding of the location of the vertical asymptote, 
there is no evidence of coordination. PSMT 3’s list-like structure of what 
the students did with the technology is common to PSMTs who did not 
demonstrate coordination between the interpretation of students’ spoken 
and written mathematical thinking and the interpretation of technology 
engagement. Such PSMTs treated the technology as separate facts 
documenting what the students did during the investigation instead of 
using those facts as evidence for what the students understood. 

While we feel disheartened that none of the PSMTs demonstrated 
coordination of interpreting on the postassessment, PSMT 4 did 
demonstrate coordination on the preassessment, with robust evidence of 
interpreting students’ spoken and written mathematical thinking and 
limited evidence of interpreting technology engagement (denoted on 
Figure 9 with a –). PSMT 4 demonstrated coordination in balancing their 
interpretations of the students’ spoken and written mathematical thinking 
with the interpretations of their technology engagement (see Table 7). 

For example, PSMT 4 discussed how the students’ engagement with the 
technology enabled them to make sense of the “weird flippy thingy.” They 
also noted that the students understood there is a procedure for finding 
the location of the vertical asymptote but the students had not yet 
connected their procedure to setting the denominator equal to 0 and 
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solving. Additionally, PSMT 4 noted that the students used the sliders to 
make sense of the location of the vertical asymptote (i.e., arrive at a 
procedure) but that the students did not explain what a vertical asymptote 
is (i.e., did not realize that the location is where the function in undefined). 

This response starkly contrasted with PSMT 4’s postassessment response. 
Similar to PSMT 3 and other PSMTs that did not demonstrate 
coordination, PSMT 4 listed what the students did with technology but did 
not interpret what these actions meant for the students’ understanding of 
the location of the vertical asymptote. 

Table 7 
Quotations From PSMT 4’s Pre- and Postassessment 

Pre Post 

As Eden and McKenzie changed the 
values on the simulator, they quickly 
eliminated k as a significant factor. As 
they continued to manipulate a and b, 
they realized those two values were key to 
where the vertical asymptote fell. By 
noticing how changes in a and b affected 
the graph, they found the solution, which 
was the negative of b divided by a. They 
then tested their solution by inputting 
different values for a and b, which 
confirmed their hypothesis. Eden and 
McKenzie had no real understanding that 
the vertical asymptote represents where a 
function is undefined; they are just 
looking for a connection between a, b, and 
the x-value of the vertical asymptote. The 
student who first discovered the solution 
even states that she thinks having to 
change the sign is “one of those weird 
flippy thingies that doesn’t really make 
sense in math.” If they had been setting 
the denominator equal to zero, they 
would have clearly understood why the 
sign was reversed. 

The students moved the sliders 
back and forth to see what 
changes were made in the graph. 
They did not appear to be 
looking at the equation at the top 
of the screen. They moved b first 
and then they started moving a. 
They say that a and b do the 
same thing. They discovered that 
when a is 0, the function 
becomes a horizontal line that 
changes with b. They know that 
k doesn’t affect the vertical 
asymptote. 

 

Discussion 

Findings from this study suggest that using the NITE framework did 
support PSMTs’ noticing of students’ mathematical thinking within a 
technology-mediated environment, which is consistent with Thomas et 
al.’s (2015) findings in nontechnological environments. For example, 
results show that PSMTs developed the skill of attending to technology 
engagement in coordination with students’ spoken and written 
mathematical thinking, and the NITE framework appears to have 
supported them in their engagement with this work. However, it did not 
seem to support PSMTs on all components of the framework in the same 
way. 
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Parallel growth was not evidenced in the PSMTs’ skill of interpreting 
technology engagement in coordination with the students’ spoken and 
written mathematical thinking. Our findings are consistent with the 
literature indicating that interpreting students’ mathematical thinking is a 
difficult practice (e.g., Stahnke et al.’s, 2016, synthesis of noticing 
literature) as PSMTs’ interpretations are dependent upon attending as the 
skills are interwoven (e.g., Superfine et al., 2017). These findings suggest 
that the skill of interpreting in a technology-mediated environment is even 
more challenging than when technology is not involved.  

While we cannot fully explain the lack of growth related to PSMTs’ 
interpretations, we propose a few potential reasons for this result. 
Possibly, the PSMTs’ content knowledge of rational functions influenced 
their interpretations, which would be consistent with prior research 
connecting noticing to content knowledge (e.g., Dick, 2017; Dreher & 
Kuntze, 2015; Sánchez-Matamoros et al., 2015). While the PSMTs all had 
extensive prior experiences with rational functions, rational functions 
were not explicitly discussed in this course. As a result, the PSMTs’ 
interpretations of this video example are possibly not representative of 
their skills as a whole. 

Another possible interpretation is related to PSMTs’ visions of high-
quality mathematics instruction, which also influences the practice of 
noticing (e.g., Sherin, 2014; Sherin et al., 2008). If PSMTs hold the belief 
that teaching should focus on imparting procedural knowledge, it follows 
that those PSMTs would focus on the students’ success in finding a rule for 
locating the vertical asymptote, instead of focusing on how the students 
were or were not grappling with the conceptual connections between the 
rule and the structure of rational functions.  

This first semester of the COVID-19 pandemic undoubtedly influenced the 
PSMTs. Multiple PSMTs had limited or robust interpretations of the 
students’ written and spoken work in the preassessment that regressed in 
the postassessment. As the skill of interpreting demands a heavier 
cognitive load than attending, it is possible that the PSMTs’ emotional 
loads from the pandemic (e.g., stress and anxiety or change in modality) 
interfered with their available cognitive load to interpret to the best of their 
ability. Specifically, the PSMTs’ responses on the postassessment were less 
detailed than on the preassessment. 

Last and importantly, the PSMTs were possibly expending more mental 
effort on integrating what they learned by focusing on the foundational 
skill of attending to students’ spoken and mathematical thinking, 
attending to students’ technology engagement, and coordinating between 
the two. In our study, the PSMTs demonstrated higher levels of evidence 
with respect to attend than interpret, implying that the skill of attending 
develops prior to interpretation. Research supports this hypothesis, as 
Jacobs et al. (2010) indicated that attending to students’ mathematical 
thinking is “a foundational skill for interpreting and deciding how to 
respond” (p. 195). Thus, with continued practice the PSMTs may improve 
the level of evidence for interpreting students’ spoken and mathematical 
thinking and interpreting students’ technology engagement after they 
have developed the foundational skill of attending. 
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Implications for Mathematics Teacher Educators  

Findings from this study suggest that mathematics teacher educators 
should provide PSMTs with more opportunities to engage with examples 
of students working in technology-mediated learning environments. 
PSMTs’ early experiences may benefit from careful scaffolding using the 
language of the NITE framework. As a result, we have refined our 
introductory module to include an explicit example of what robust 
attention to and interpretation of students’ written or spoken responses 
and of students’ technology engagement entails, and we have added 
questions that prompt the PSMTs to consider the relationship between 
technology engagement and mathematical thinking. In addition, we have 
included questions that require PSMTs to consider how interpreting 
students’ mathematical thinking is dependent upon the ability to attend 
and how these skills are interwoven (e.g., Superfine et al., 2017). 

We suggest that mathematics teacher educators who are working to design 
such experiences for their PSMTs include these types of explicit scaffolds 
when PSMTs are engaged in noticing students’ thinking in technology-
mediated learning environments. Additionally, mathematics teacher 
educators should work to incorporate a variety of opportunities for PSMTs 
to practice the pedagogical intricacies associated with teacher noticing in 
such environments. 

Noticing students’ mathematical thinking in a technology-mediated 
environment is a complex but incredibly important practice for preservice 
teachers to develop. The results of this study suggest that using the NITE 
framework to support PSMTs’ development of this practice has promise, 
especially related to coordinating students’ attention to written and 
spoken mathematical thinking with their technology engagement. With 
further refinements to the project modules based on the findings of this 
study, we hope to see similar results related to PSMTs’ interpretations. 
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Appendix 

Transcript of Eden and McKenzie Working on the Vertical 
Asymptote Desmos Activity 

 

McKenzie: The asymptote isn't based on... just those numbers alone. 
Because look, if you do it there... it's not going to be exactly on 
that number. [Student drags slider b to change the value from 
5 to 4 which moves the graph to the right on the x axis.] 

Eden: Yeah… 

McKenzie: So… how can you predict the location of a vertical asymptote 
given the function rule? I think... wait… I don't know… I'm 
confused because 'a' and 'b' do the same thing… wait move 
'a' [Student drags slider a to change the value from 5 to 2 
which results the graph moving to the left 3 places and the 
graph stretches horizontally.] 

McKenzie: I feel like it makes it bigger, or is that just me? 

Eden: Oh oops! What did I just do? 

McKenzie: Go to zero. [Student drags slider to change the value to 0 which 
results in a horizontal line at y=1.] 

Eden: But it's still three. 

McKenzie: Go to zero for 'b'. [Student drags slider b to change the value to 
0 which results in the function no longer appearing in the 
graphing window; the asymptote is still visible.] 

McKenzie: That moves up and down because… this doesn't move vertical 
asymptote. [Student drags slider k to change the value from 1 
to 12 which does not affect the vertical asymptote but results in 
the graph stretching vertically.] 

McKenzie: This moves your vertical asymptote, so something with that 
and this one is your vertical asymptote. [Student drags slider a 
to test values from -1 to 4 which results in the horizontal 
asymptote moving from left to right.]  

McKenzie: So I think that whatever 'b' is your vertical asymptote. 

Eden: I think it's... 

McKenzie: But it has something to do with 'a' too, though. 

Eden: I think it's… I think it's… um… [groaning] divided by 'a'. Yeah, 
I think it's, I think it's 'b' divided by 'a' cause, cause look two 
divided by four is what? 

McKenzie: Two divided by four is one half but two divided by negative 
four is negative one half. 
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Eden: I know, I think it's just, I think it's just one of those weird 
flippy thingy with that graphs do. 

McKenzie: Let's try this number and… oh and I need to go down to this 
number. Hold on one… point five. [Student drags the sliders 
and sets the values at k = 0, a = -10, b = 5. K = 0 results in the 
graph not moving even when the student changes the a value 
from -10 to 0.] 

McKenzie: Oh! You’re right cause that's point five. 

Eden: I think it's one of those weird flippy thingy. That doesn't really 
make sense and yeah 

McKenzie: Or... This [laughing] or... 

Eden: Two… two and a four 

McKenzie: We can do two in here and four. [Student drags sliders a and b 
and sets the value of a to 2 and the value of b to 8 which 
changes the vertical asymptote from x=-.5 to x=-4] 

Eden: Yeah 

McKenzie: Yeah, it's one of those flip things. And then that's... 

Eden: So… if I were to define the vert... I would tell my friend to… 
divide... 'b', whatever 'b' is, by 'a' and then make it equals… 
okay, 'b' divided by 'a'. 

McKenzie: One sec, I have to write this out. 

Eden: Equals negative 'x' or whatever. 

McKenzie: Okay. 
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