
Minksky, M. (2022). Reflection: College students respond to “Twenty Things” in
2020. Contemporary Issues in Technology and Teacher Education, 22(2), 286-
292.

286

Reflection: College Students
Respond to “Twenty Things” in 2020

Margaret Minsky

In 1971 Seymour Papert and Cynthia Solomon published “Twenty Things
to Do With a Computer” (MIT Artificial Intelligence Memo No. 248 / Logo
Memo No. 3), republished in this issue of the CITE Journal (Papert &
Solomon, 2022). Note: a related article, “Twenty Things to Do with Snap!,”
is published in this issue of the CITE Journal (Harvey, 2022).

We asked six college students in a class on constructionist learning to read
“Twenty Things to Do With a Computer” and respond to a series of
prompts.

The students had several weeks of introductory experience using the
educational computer language Snap! and were concurrently starting
projects in Turtlestitch, a language variant for programming computer-
controlled embroidery machines. They also read portions of the book,
Mindstorms: Children, Computers, and Powerful Ideas (Papert, 1980)
and some counterpoint essays with alternative perspectives about
computational thinking. In addition, they listened to a recorded
presentation by Cynthia Solomon (2019). This paper presents students’
interpretations through summary highlights followed by longer quotations
from their written responses.

Here are three of the prompts:

• The paper “Twenty Things to Do With a Computer” was written
in 1971. Are any of the topics in the paper outdated? Why?

• Choose two or three of the topics in “Twenty Things to Do With a
Computer” that are available today and comment on them.
(Choose areas that you could write programs for yourself, or that
you could teach to beginners ... using Snap! or any other
computer programming environment that you know about).

• Write at least two questions you have for Cynthia Solomon based
on her presentation or the Twenty Things paper. Why are these
questions important to you?

mailto:margaret.minsky@gmail.com
https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-a-computer
https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-a-computer
https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-snap

Contemporary Issues in Technology and Teacher Education, 22(1)

287

Let’s begin with “What’s outdated”? “Twenty Things to Do With a
Computer” was written 30 years before the oldest students in the class
were born.

Their answers encompass a range of responses, from enthusiastic appeal
to a critical look at areas in the paper as retro vintage. Some students took
a historical perspective on the text itself. Others expressed a timeless
empathy with the project of creating a beginner learning environment,
while still others looked backward from their immersive literacy in the
creative media and audio-visual systems that are available today. Some
were surprised by the paper’s contemporaneous provocations about
Artificial Intelligence and understanding human thinking.

Are Any of the Topics Outdated

Message is not outdated, but never heard of Spacewar.

I don’t think the message behind the Twenty Things is outdated,
particularly regarding the way people in education treat computers, but I
do think that Number 5 (Play Spacewar) of the twenty things is the most
outdated of the things listed ... and I only say that because I’ve never heard
of Spacewar before. I’ve heard of games like Galaga and that old ping-pong
game where you had to prevent the ‘bal’” from hitting the left and right
edges of the screen, but Spacewar is not one that I’ve heard of, so I had no
point of reference to fall back on for that part of the text.

Still relevant

I don’t think that any of the ideas in our reading this week were necessarily
out of date.They are all things that one can program a computer to do –
most of them are less alien or novel than they may have been when written
about in 1971. However, the ideas and types of programs talked about are
still relevant, intriguing and explored on a regular basis today ...

Responses to the Tools Described

Processing’s shape manipulation surpasses the simplistic
shapes in the text

Connections between numeric coding and generated visuals definitely has
already been eclipsed by modern day languages. Processing’s shape
manipulation surpasses the simplistic shapes in Twenty Things to Do with
a Computer. [Processing is a visual language developed in 2001.]

A modern music box is way beyond the text

The areas where a music box is referenced is quite outdated, as
computerized music has emerged over the last decade and has taken over
the music industry. The capacity of the modern ‘music box’ is way beyond
what is described in the text.

Contemporary Issues in Technology and Teacher Education, 22(1)

288

Turtle Programming is more accessible now; Blocks are more
engaging than a text language

When it comes to the outdated part of the paper, I think what should be
emphasized is that the turtle programming is quite accessible nowadays.
Therefore, the topics such as Make A Turtle, Draw A Heart, etc. seem to be
quite easy today. The computing language used in the paper, LOGO, seems
complicated and not that interesting. Instead, the commands and blocks
in Snap! are more beginner-engaging, which add visual aids to the basic
black-and-white screen.

Responses Indicating a Radically Different View of what
AI Means:

AI is different now, in fact, it has surpassed humans

Another thing that is quite outdated is the signifying of these codings as
‘AI’. I think back in the day the article was written, in 1971, have definitely
surpassed. It would be difficult to still relate to these functions as Artificial
Intelligence today. As artificial intelligence of 2020 has far surpassed these
boundaries, into territories that match the human being’s own empathetic
processes. The AI of today has surpassed even humans, and is able to
develop itself.

A different view of AI from that proposed in the text

About the explain yourself part of this article, I think that the machine is
very different from a person. It is very hard to use a machine to simulate
human. Machine have their own sight of world which is very different from
human. For example, Alpha Go made some impossible steps in the game
Go, to make people reconsider the steps of playing Go.

The second prompt, asking for topics in the text that students would still
like to explore today, elicited a wide range of choices: Differential/Turtle
Geometry (1 student), Spirals (1 student), Debug a Heart (1 student),
Growing Flowers (2 students), Make a music box (2 students), Text
Generator (2 students), and Think of your own things…make a game! (1
student). The original intent of the paper shines through in the student
responses. Students who are beginning programmers, as well as those with
experience in contemporary Creative Coding, discuss their inspirations
from the paper.

Text Generator; text “Without the Sarcasm”

One area I really like, based on personal interest as something that I could
modify, in the Twenty Things to Do with a Computer is number 16 [Text
Generator]. This one generates specific true statements and then taunts
the person interacting with the program. One thing that I’ve been thinking
about how to code would use similar mechanics, without being as
sarcastic. I’ve been considering ways to create a code that would generate
an I Ching hexagram for divination purposes. It would involve
randomization, math, and coming to specific conclusions, i.e. drawing

Contemporary Issues in Technology and Teacher Education, 22(1)

289

specific lines, based on the results it got, and I think this program could
potentially be a good place to start with that if I decided to actually code
this project.

This student also elaborated:

In the Twenty Things paper, number 16 that I mentioned earlier
is similar to a very basic prototype of an AI, in that it generates
responses based on user input. If we’re considering this basic AI
as the basis for a rich world, which I think it would in that it’s
similar to music which is something with specific building blocks
that could potentially have a lot of outcomes, I think the divination
project I mentioned would be a good example. Because while you
could keep it very simple (random generator gives numbers that
are added together to select a specific outcome until you reach one
or two of 64 possible outcomes), you could also add in speaker
prompts where it actually tells you what the hexagram means and
gives you the answer within the program itself. From there, you
could code the answer to be given with any attitude you want,
depending on what type of personality you want your
programmed oracle to have, be it sincere, blunt, sarcastic, or
something else.

Another area I like that is useful for teaching is number 9, which
is for growing flowers. I think this one would be really easy to bring
into Snap!, at least after adding a block for curved lines. It might
not be the best for having beginners start from scratch with zero
guidance, but if a teacher wanted to create the project with a
dedicated curve block in advance or have their students
brainstorm how to make a curved line using the repeat function,
then I think it would give them more things to experiment with.

The student who contributed the following response enjoys using simple
yet highly generative patterns, similar to the spirals that are inspiring
current Turtlestitch programmers. They focussed on the imagery as
“psychedelic”, which is an interesting callback to the 1970’s (whether it is
historically rooted or has become newly interesting to this generation). In
writing about their programming in the context of the Twenty Things
paper, the student demonstrates that they understand that describing
their program is important; they enjoyed creating narrative descriptions
of programming concepts.

Psychedelic patterns and spirals

I am quite interested in using differential geometry in order to create
psychedelic and geometric images for use in the turtle stitch platform.
Following the entries in the Twenty Things paper, in order to create a
simple geometric figure, it requires three steps.

1. Draw forward by a certain number
2. Turn at a certain degree
3. Repeat

Contemporary Issues in Technology and Teacher Education, 22(1)

290

In this very simple function, one can create a symmetrical shape by
drawing forward a certain degree and then rotating the turtle. Doing this
over the desired many of times suitable for the shape will create a
geometric function, anything as simple as a square to a giant polyfigure.
In order to teach this to kids, I think it is beneficial to provide the 1,2,3
coding structure as a base program, and then allow them to adjust the
different values of the STEP, ANGLE, and POLY values in order to create
different figures and learn the values of each equation by creating different
shapes within the same function.

Draw Spirals requires using the same function as the differential geometry
program, however with each repeat of the system, add a value to the
drawing forward number in order to make the figure sequentially expand
outward. This function will look something along these lines.

1. Draw forward by a certain number
2. Turn at a certain degree
3. Add a number to the value in step 1, then repeat

By altering the final step, by making the STEP value something that will
change over the course of the turtle stitch, we can allow our original
geometric shape to become a sequential spiral that increases the STEP
value over the running of the code. In order to apply this to an educational
setting, it is important to first teach the students the importance of
differential geometry, and then challenge them to figure out how to make
their geometric shapes into expanding spirals, they can first be given the
challenge to figure it out on their own, and then more and more hints
given. Allowing them to figure out how to evolve from a geometric shape
from area #6 to the spirals of area #7 will give them the opportunity to
make these spirals and learn on their own how they can manipulate their
own turtle stitch coding.

In response to the third prompt, questions for Cynthia Solomon, here are
three student responses.

I really enjoy her talking about early history of programming
language. I am super surprised that they invented a language for
kids! In my understanding, at that time, computer is still a high-
technology symbol. I will not let children be in charge with “high
technology”. However, they chose to simplify everything, and let
kids learn them. It is never an easy thing to simplify things, if you
can explain something to people who know nothing about it
clearly, you must understand that thing deeply. It is even harder
to make a system for beginner! If I remember correctly, at that
time punch card was still one of the mainstreams. I really enjoy
her talking about some out of expected things during teaching
kids. By outputs, not only children learn about programming, but
they learned more as well. I really love her idea about letting kids
to be the co-designers and collaborators.

Contemporary Issues in Technology and Teacher Education, 22(1)

291

So here are my questions. When I was young, I was
so willing to learn about programming. However,

because of the limitation of the language, I could not
access to low threshold programming language. I
really don’t think that language should be a thing

stopping people to learn. For those young children,
how they learn about this language, if they are

confused by the language? Also, I noticed that Logo
is very much based on the English language. Also,

because I am able to speak in two languages, I know
that here are some logic differences while you are

speaking in different languages. Since the grammar
of each language is so different, do you think the

native language will influence some programming
learning?

And, I really want to know why you chose to do the kid education
with programming. Before I know more about turtle and Snap!, I
was thinking that it is impossible for children to learn
programming. How can I convince their parents, and most of their
parents are also beginners of programming, is it possible to let
them learn together? How about a family learning?

You mentioned in your talk that making things for machines has
some limitations, and I’m curious about what you think some of
these limitations are as someone who was fundamental in creating
these programs? I can come up with a few limitations that are
mostly inspired by my lack of experience in coding and
programming, but I’m curious as to what you think these
limitations would be. In that same sentence you mentioned
“interesting obligations” as well, and I wanted to ask what that
meant?

In the video, the host mentioned Cynthia Solomon’s project to
combine computing with social justice in order to encourage kids
to rediscover ideas and look into the definition of the world. I am
curious about how to combine those two while keeping social
issues easy for the kids to understand and analyze?

Also, in reality, many patterns we program cannot fit in the Total
Turtle Trip Theorem, what is the importance of the theorem and
are there any applications of it in the real world? They are
important to me because I’m quite impressed by the project and
the theorem when hearing them in the talk.But I’d like to be more
specific on their details for further exploration. I think they are
closely related to the design of programming environment for kids
and computational thinking skills discussed in the course.

The students’ comments stem from two perspectives. One is the
perspective of introductory creative media arts students using their
historical, or imagined historical, contextual assumptions about the

Contemporary Issues in Technology and Teacher Education, 22(1)

292

1970’s. The other perspective comes from their contemporary literacy in
creative media software, and Artificial Intelligence, generating both
enthusiasm for the original paper and critiques of some aspects. Their
enthusiasm manifests in suggestions for continued exploration of the
projects in this paper and for new project areas. For these students, at
least, many of the topics addressed in original "Twenty Things to Do with
a Computer" paper are still relevant today.

References

Harvey, B. (2022). Reflection: Twenty things to do with
Snap! Contemporary Issues in Technology and Teacher Education,
22(1). https://citejournal.org/volume-22/issue-1-22/seminal-
articles/twenty-things-to-do-with-snap

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.
Basic Books.

Papert, S. & Solomon, C. (2022). Reprint: Twenty things to do with a
computer. Contemporary Issues in Technology and Teacher Education,
22(1). https://citejournal.org/volume-22/issue-1-22/seminal-
articles/twenty-things-to-do-with-a-computer

Solomon, C. (2019). When computers were new: Keynote presentation in
acceptance of the FabLearn Lifetime Achievement Award. FabLearn 8th
Annual Conference on Maker Education, New York, New York.

https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-snap
https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-snap
https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-a-computer
https://citejournal.org/volume-22/issue-1-22/seminal-articles/twenty-things-to-do-with-a-computer

Contemporary Issues in Technology and Teacher Education, 22(1)

293

Contemporary Issues in Technology and Teacher Education is an online journal. All text,
tables, and figures in the print version of this article are exact representations of the original.
However, the original article may also include video and audio files, which can be accessed
online at http://www.citejournal.org

	References

