
Harvey, B. (2022). Reflection: Twenty things to do with Snap! Contemporary
Issues in Technology and Teacher Education, 22(1), 218-223.

218

Reflection: Twenty Things to Do
With Snap!

Brian Harvey

Editor’s Note: Brian Harvey and Jens Mönig jointly developed
the educational programming language Snap!. A parallel
computer science course, Beauty and Joy of Computing, which
is tightly integrated with Snap!, is endorsed for Advanced
Placement CS Principles credit by the College Board. With
support from the National Science Foundation, this course has
been taught by more than one thousand high school computer
science teachers. For this and other accomplishments, they have
received the National Technology Leadership Summit
(NTLS) Educational Technology Leadership Award, which
recognizes individuals “who made a significant impact on the
field of educational technology over the course of a lifetime.”

In 1971 Seymour Papert and Cynthia Solomon published
“Twenty Things to Do With a Computer” (MIT Artificial
Intelligence Memo No. 248 / Logo Memo No. 3). Some of the
activities suggested included use of a turtle to create art, use of
a computer to create music (using Logo music extensions
developed by Jean Bamberger), creation of a computer-
generated light show, creation of computer-generated poetry,
and construction of computer-controlled puppets. The original
publication is republished in the Seminal Articles section of this
issue of the CITE Journal.

Design of an educational computing language such as Snap!
does not occur in a vacuum. It is influenced by past
developments and by the needs of future generations. This
reflection is written from that perspective on the occasion of the
50th anniversary of “Twenty Things to Do with a Computer.”

mailto:bh@cs.berkeley.edu

Contemporary Issues in Technology and Teacher Education, 22(1)

219

The real subtext of “Twenty Things” was “Twenty things to do by
programming a computer.” After all, in practice one of the most beloved
things my high school students did with our computer was use its text
editor to write their English papers, so when their teacher made them
correct the errors in it, the task was not torture as it was before computers.
That detail is not in “Twenty Things,” however.

Some of the activities suggested in “Twenty Things” are still thriving 50
years later, even more so as technology improves. Back then, robot turtles
had to be tethered to the computer with cables that got twisted and limited
motion. Now, there are Bluetooth and Zigbee tetherless robots, and with
Micro:Blocks you can even download a Snap! program to a robot and have
it be fully autonomous.

Many of the things listed in “Twenty Things” can be done better
today without programming and, therefore, would not be in today’s list.
Making music in Garage Band is way cooler than programming Jeanne
Bamberger’s music box in Logo.

Yet, surprising exceptions exist. Anybody can draw a square in a modern
drawing program with a simple click-and-drag. We thought that feature
would kill turtle graphics, which was part of the impetus behind giving
sprites costumes and using them to tell stories. It turns out kids are still
excited the first time they draw a square in [insert programming language
here]! And squirals (Figure 1) are just as magical as ever.

Figure 1. Squiral.

Fractals remain, too, although computers are now fast enough to draw
Mandelbrot sets point by point, so you can program more beautiful ones
using programming techniques that do not illuminate recursion the way
trees and Koch snowflakes do (Figure 2).

Contemporary Issues in Technology and Teacher Education, 22(1)

220

Figure 2. Fractal.

Really redoing the list in the spirit of the original requires paying attention
to “what do you learn by doing this?” For Seymour Papert, it was all about
mathematics. Turtle graphics teaches finite differential geometry,
concrete poetry teaches production grammars, and so on. Of course, the
twenty things were also supposed to be fun!

So, in some respects, the list of things to do in Snap! would not be all that
different. The currently exciting math has shifted to some extent, from
geometry to statistics, because of machine learning. So artificial
intelligence (AI) projects would be good to include, preferably projects
that really teach a simplified but honest understanding of computational
neural networks.

Robotics, too, would still be on the list but maybe in different forms. The
FIRST robotics program (https://www.firstinspires.org/robotics/frc) has
raised the bar tremendously on the hardware side. My (third-hand)
understanding is that their teams do the software side with a lot of copy-
pasting, and not so much understanding or originality as Logo teachers
would want to see. Even in the old days, however, trying to drive a robot
turtle up a ramp taught things about friction and, more generally, the
uncooperativeness of physical reality with respect to theoretical
understanding.

Kids write 3D ray tracing programs in Snap!. I find that level of attention
to detail beyond my level of patience (not to mention competence), but the
activity has plenty of good mathematics. It is well beyond the speed of the
early personal computers.

https://www.firstinspires.org/robotics/frc

Contemporary Issues in Technology and Teacher Education, 22(1)

221

Music, which I rejected earlier, also has some good mathematics in it: the
Pythagorean investigation of musical intervals as rational numbers. In
Jeanne Bamberger’s early work with Logo, the notes were taken as
primitive building blocks, not looking inside the sine waves. I would be
happy with a music microworld that taught the beginnings of music
theory.

Snap! continues to evolve as part of an iterative dialog between developers
and the user community. A contemporary list of things to do with Snap! is
found in many forms and locations:

Joachim Wedekind’s materials for Art Across the Curriculum
(http://digitalart.joachim-wedekind.de/ueber-das-buch/) take the form
of a book – the old-fashioned paper kind (Figure 3).

Figure 3. Art Across the Curriculum Book Cover.

Snap! lessons (https://open.sap.com/courses/snap1-1?locale=de)
developed by Jens Mönig and Jagda Hügle consist of videos embedded in
a Massive Open Online Course (MOOC; Figure 4). The media arts
curriculum developed by the Make to Learn team led by Glen Bull lives in
threads of the Snap! Forum. Paul Goldenberg’s early-childhood math
curriculum (https://elementarymath.edc.org/) centers on a series of
Parsons Problems embedded in Snap!, but Snap! itself is hardly visible in
them (Figure 5). Other Snap! activities are likely to live inside a Course
Management System (CMS) such as Canvas.

http://digitalart.joachim-wedekind.de/ueber-das-buch/
https://open.sap.com/courses/snap1-1?locale=de
https://elementarymath.edc.org/

Contemporary Issues in Technology and Teacher Education, 22(1)

222

Figure 4. Screenshot from MOOC on Snap!

Figure 5. Screenshot from Goldenberg’s Early Childhood Math
Curriculum

The user communities that form around an idea are as important as the
tool and associated activities and curricular materials. For example,
TurtleStitch (https://www.turtlestitch.org/) is an extension of Snap! that
enables users to create embroidered patterns using geometric designs
(Figure 6). Snap4Arduino (http://snap4arduino.rocks/) is an extension of
Snap! that enables users to interact with devices in the physical world via
microcontrollers (Figure 7). NetsBlox (https://netsblox.org/) is an
extension of Snap! that enables novice programmers to create networked
programs such as multi-player games.

https://www.turtlestitch.org/
http://snap4arduino.rocks/
https://netsblox.org/

Contemporary Issues in Technology and Teacher Education, 22(1)

223

Figure 6. TurtleStitch Embroidery.

Figure 7. Snap4Arduino at Work.

The last line of “Twenty Things to Do With a Computer” is a recursion line:
“Think up twenty more things to do.” The user communities that have
formed around these extensions have generated many more things to do
with a computer, including, in some cases, generation of other extensions.
In this respect, this recursive generation of ideas and things to do with a
computer realizes the vision embodied in the original “Twenty Things”
paper published 50 years ago.

Contemporary Issues in Technology and Teacher Education is an online journal. All text,
tables, and figures in the print version of this article are exact representations of the original.
However, the original article may also include video and audio files, which can be accessed
online at http://www.citejournal.org

Contemporary Issues in Technology and Teacher Education, 22(1)

224

