
Harvey, B. (2020). Commentary: Thoughts on “Exploring Language: The Journey
from Logo to Snap!” Contemporary Issues in Technology and Teacher
Education, 20(3), 583-585.

583

Commentary: Thoughts on
“Exploring Language: The Journey

from Logo to Snap!”

Brian Harvey

University of California, Berkeley

Read related papers:
Introductory Article: Integrating Language Arts and Computational
Thinking: A Reflection on the Importance of Gossip
Commentaries:
Gossip and Other Life Sentences: A Simple Grammar
Thinking: A Reflection on the Importance of Gossip
Reflections on “Exploring Language With Logo”
Exploring Language: The Journey from Logo to Snap!

Editor’s Note: Brian Harvey was a member of the design teams
for microcomputer versions of Logo for the Apple II, the Atari
800, and the Apple Macintosh and served as the lead developer
of Berkeley Logo, a free implementation of Logo available from
the University of California, Berkeley. He is the codeveloper,
with Jens Mönig, of Snap!, a block programming language.

I am delighted that Snap! is viewed as an improvement, but in various
ways this article does not do justice to Logo.

https://citejournal.org/volume-20/issue-3-20/seminal-articles/integrating-language-arts-and-computational-thinking-a-reflection-on-the-importance-of-gossip/
https://citejournal.org/volume-20/issue-3-20/seminal-articles/integrating-language-arts-and-computational-thinking-a-reflection-on-the-importance-of-gossip/
https://citejournal.org/volume-20/issue-3-20/seminal-articles/9783-2/
https://citejournal.org/volume-20/issue-3-20/seminal-articles/9783-2/
https://citejournal.org/volume-20/issue-3-20/seminal-articles/reflections-on-exploring-language-with-logo/
https://citejournal.org/volume-20/issue-3-20/seminal-articles/9809-2/

Contemporary Issues in Technology and Teacher Education, 20(3)

584

Lists of Words

The Snap! LIST block is compared with the Logo square bracket notation.
But one advantage of the Logo notation is that it's the same for input and
output. The Snap! representation of a list on output is meant for
complicated lists of various kinds of things, including lists of lists, and it is
a bit heavy if what you want is a sentence. A Snap! list doesn't look
anything like a kid's idea of a sentence, which is simply a bunch of words
next to each other.

Also, Logo has two different input notations for lists: the square brackets
for a constant list, and a LIST reporter, just like Snap!'s, that allows for
arbitrary expressions to compute the items:

(LIST "Sandy "Dale "Dana "Chris)

Snap! lacks the simpler input notation for a constant list; the only way to
input a list is with the LIST reporter.

Grouped Sequence of Words

Snap! doesn't have words and sentences as primitive data types; instead it
has the lower-level idea of text strings. Thus the sequence of verbs

[cheats [loves to walk] yells]

doesn't require the inner brackets when given as three text strings in
Snap!. But there is a cost to that: you lose the information that the second
verb is made of three words. Here is why that matters: Those verbs are all
in the third person singular form, with an "s" at the end of ... of the
verb? Not if you consider "loves to walk" a verb. The "s" comes at the end
of the first word of the verb.

Now suppose you want to write a procedure to convert these verbs to third
person plural form. To simplify the discussion, let's just convert one verb,
and then map that function over the list of verbs. So:

to pluralize :verb
 if wordp :verb [output butlast :verb]
 output sentence (butlast first :verb) (butlast :verb)
end

Doing the same thing in plain Snap! (without the Word-Sentence library)
is a nightmare of searching for space characters, focusing attention on
computers instead of on language.

Contemporary Issues in Technology and Teacher Education, 20(3)

585

Combining Words to Form Sentences

Speaking of focusing attention on computers, it is actually kind of
annoying to have to put those explicit spaces between words, so you need
2n-1 inputs to JOIN for n words. That's why the Word-Sentence library
has a JOIN WORDS block that takes care of that for you.

The "Words and Sentences" Library

In Logo, the representation of sentences as lists of words was designed so
that both the programming (in terms of words, not characters) and the
visual representation (looking just like text) fit with kids' habitual
experience of words and sentences. In Snap!, we inherited from Scratch a
low-level notion of character strings. So we have to choose between
strings, which look like sentences but are a pain to program with, and lists,
which allow Logo word-sentence programming techniques but do not look
anything like sentences.

Among the Snap! libraries is a "Words and Sentences" one that allows you
to use the normal-looking representation (character strings) but apply
Logo-style operations (e.g., all but first word) to them. And, on the other
hand, it has a SENTENCE reporter that takes any combination of strings
and lists, and combines them into one flat list of words, and an inverse
operation PRINTABLE that takes a list and turns it into a text string, with
sublists indicated, as in Logo (but with parentheses instead of square
brackets).

One advantage that Snap! does have over Logo is that the user does not
have to type procedure names.

Instead of Logo’s BUTFIRST function that works differently on words and
sentences, we can have “all but first letter of ___” for words and “all but
first word of ___” for sentences.

Contemporary Issues in Technology and Teacher Education is an online journal. All text,
tables, and figures in the print version of this article are exact representations of the original.
However, the original article may also include video and audio files, which can be accessed
online at http://www.citejournal.org

	Lists of Words
	Grouped Sequence of Words
	Combining Words to Form Sentences
	The "Words and Sentences" Library

