
Bull, G. L. (2020). Exploring language: The lourney from Logo to Snap!
Contemporary Issues in Technology and Teacher Education, 20(3), 577-582.

577

Exploring Language: The Journey
from Logo to Snap!

Glen L. Bull

University of Virginia

As Paul Goldenberg notes in his reflection on the republication of
Exploring Language with Logo as a seminal paper in the CITE Journal,
at the time the original work was published, Logo was the only
computing language with linguistic features that enabled children to
explore language and linguistics in a playful way. Today there are many
other choices. Snap!, a direct descendent of Logo, is one of the better
choices for this type of exploration.

Snap! encompasses the list processing features of Logo described in
Exploring Language with Logo. It can be used to explore language in the
same way as Logo. However, because it is a block-based coding system
with a web-based graphical user interface, students can devote more of
their time to exploration of language and less time dealing with
programming trivia that does not directly advance language learning.

In the sections that follow, the original functions first described in
Exploring Language with Logo are compared with modern-day
implementations of the same concepts in Snap!

Lists of Words

Modern educational programming languages like Snap! build upon the
foundation of Logo. In Logo a list of words is enclosed in brackets:

 [Sandy Dale Dana Chris]

mailto:gbull@virginia.edu

Contemporary Issues in Technology and Teacher Education, 20(3)

578

This notation was the most convenient way of expressing a list of words
in an era prior to graphical user interfaces. In Snap! a similar list is
expressed in this way:

There are two benefits made possible by the graphical interface. The first
is that the word list at the beginning of the list immediately lets a novice
know that this sequence is a list. The second benefit is that typographical
errors are reduced; it is no longer possible to create a list with
mismatched brackets. This advance reduces the time that students spend
debugging programming errors, enabling them to focus on exploring
language.

Randomly Picking a Word

Many of the language explorations such as creation of computer-
generated poetry involve the process of randomly picking a word from a
list. In Logo a procedure to pick a word from a list would be written in
this way:

 To Pick :Object
 Output Item (1 + Random Count :Object) :Object
 End

Once this tool was created, it could be used to pick a word from a list.
(The question mark before the command Pick is the Logo prompt.) In
this example, Pick has randomly picked Dale from the list:

 ? Pick [Sandy Dale Dana Chris]
 Dale

In Snap! a code block that can pick an item from a list is built into the
language. It is no longer necessary to create this tool. In this example, the
name Chris has been randomly picked from the list:

Snap! includes the language processing capabilities of Logo refined in a
way that is more accessible to users. There is less to learn about
computers before diving into exploration of language. This takes
advantage of the capabilities offered by modern graphical user interfaces.

In Logo the notation made it necessary to enclose a grouped sequence of
words (such as loves to walk) as a sublist, in another set of brackets. This
example illustrates the way in which a sublist within a larger list might be
indicated by a set of inner brackets within the outer brackets.

[cheats [loves to walk] yells]

Contemporary Issues in Technology and Teacher Education, 20(3)

579

In Snap! both the inner set of brackets and the outer set of brackets
disappear altogether. Something like this is occurring within the bowels
of the computer, but the user no longer has to manage these
housekeeping details. This again allows the focus to be placed on
language exploration rather than programming trivia.

The Grammar of Gossip

Goldenberg and Feurzeig conceived of an initial grammar for gossip as
consisting of a person (Who) and an action (DoesWhat). These
procedures could be written in Logo in the following way:

 To Who
 Output Pick [Sandy Dale Dana Chris]
 End

 To DoesWhat
 Output Pick [cheats [loves to walk] [talks a

mile a minute] yells]
 End

In Snap! comparable procedures could be written in this way:

The Who and Does What code blocks can be clicked to generate
gossip.

Contemporary Issues in Technology and Teacher Education, 20(3)

580

Combining Words to Form Sentences

In Logo the command Sentence is used to put lists of words together
in sentences.

 Sentence Who DoesWhat

In Snap! the code block Join is used to join text strings together.

As more complex sentences are created, more inputs to Sentence are
needed. For example, the structure:

 Who DoesWhat Who

might generate sentences like:

 Dale looks for Dana

Because Logo is a text-based language, the scope of an expression was
described with parentheses, as it is in the arithmetic statement (3 + 7) ×
5, which indicates that the scope of + applies to 3 and 7, not to 3 and the
product of 7 and 5. When a Logo function could take a varying number of
inputs, the parentheses indicated that scope.

 (Sentence Who DoesWhat Who)

This led to lots of confusion about the distinction between brackets (used
to designate lists of words) and parentheses (used to include more than
two inputs in this instance). While this notation may have been logical
from a computer programmer’s viewpoint, remembering the distinction
placed an additional burden on students’ memory that served as a
distraction from the goal of learning language.

In Snap! additional input slots can be created by clicking the right arrow
at the right end of the Join code block.

Eliminating the need for both brackets and parentheses through use of
the affordances of a graphical user interface also eliminates the need to
remember the distinction between the parentheses and bracket notation.

The graphical interface also makes it possible to create more English-like
structures. In Logo (and most other text-based programming languages
such as Python, JavaScript, etc.) the name of a procedure is limited to a
single word. Therefore, the two words of the English phrase does what
must be combined into the single name DoesWhat when this term is

Contemporary Issues in Technology and Teacher Education, 20(3)

581

used to define a Logo procedure. In Snap! the more English-like
structure Does What can be retained when the function is defined.

The Gossip Procedure

In Logo the master gossip procedure might be created in this way:

 To Gossip
 Output Sentence Who DoesWhat
 End

In Snap! the equivalent procedure could be constructed in this manner.

The master gossip procedure can be used to create sentences such as this.

Computational Thinking and Function Machines

The concept of functions exists in many symbolic systems, including
mathematical, logical, and linguistic systems. In programming, a
function can be described as a computer procedure that returns a value.
For example, the function Who returns the name of a person and the
function Does What returns an action. These values, in turn, can be
combined to form sentences. The concept of function machines is
introduced in Exploring Language with Logo. These machines are
depicted in the form of diagrams in which the output of one function can
serve as the input to another function. In this example, Who and Does
What serve as inputs to the function Sentence.

Contemporary Issues in Technology and Teacher Education, 20(3)

582

This is the point at which the intersection of computational thinking and
linguistic thinking occurs. An algorithm is a description of a rule or a
process. For example, to form a plural in English:

1. add the consonant “s”
• unless … in which case, add “es”

2. unless a word ends in “y”; then add “ies”
• unless, as in “boy,” you need to take another condition

into account
3. unless….

Humans have limited capabilities for execution of algorithms. Our
working memory is limited, and we have limited capacity for perfect
execution of repetitive tasks. On the other hand, computers excel at
perfect execution of a process if the process can be described. An
algorithm is a recipe for execution of a process that the computer can
follow. The function machines described in Exploring Language with
Logo are graphical expressions of algorithms.

The key computational thinking concepts of algorithms and abstraction
work hand in hand. Once an algorithm has been tested and has proven to
be effective, it can be encapsulated in the form of an abstraction. The
function Who is an abstraction that conceals the messy details (Item
Random List [Sandy Dale Dana Chris]) that underlie its
operation. This enables human programmers to focus on its functionality
and protects them from the necessity of remembering the underlying
complexity. This makes it possible to write much more complicated
programs than otherwise would be possible.

Summary

Advances in technology now make it easier than ever to undertake such
explorations. In contrast, the underlying pedagogical goals for such
explorations have not changed at all.

One of the joys of exploring language with a computer is that this process
makes it possible for unexpected results to occur. In fact, creation of a
program of any degree of complexity almost guarantees that
unanticipated results will occur, surprising the programmer. It is at this
moment of unexpected discovery that the opportunity for learning occurs
in a way that could not occur in the absence of a computer.

Contemporary Issues in Technology and Teacher Education is an online journal. All text,
tables, and figures in the print version of this article are exact representations of the original.
However, the original article may also include video and audio files, which can be accessed
online at http://www.citejournal.org

