Most Recent

Volume 20  Issue 2  

Electrifying: One Teacher’s Discursive and Instructional Changes Through Engagement in E-Textiles to Teach Science Content

by Colby Tofel-Grehl, Eliza Jex, Kristin Searle, Douglas Ball, Xin Zhao & Georgia Burnell
Full Article Show Abstract

This paper shares findings from the first of its kind quasi-experimental mixed methods study exploring the potential impacts on teacher instruction through engagement with making and e-textiles. Because engagement in hands-on inquiry has demonstrated strong promise for increasing student interest and engagement in STEM careers, finding curricular approaches that engage students in project-based learning remains important. As such, the Maker Movement and making has gained traction as a possible effort to improve such outcomes. This study shares outcomes from analyses of one teacher’s first engagement with teaching eighth-grade science through e-textiles. Four of his classes were taught using his traditional science curriculum while four of his classes were taught with an equivalently designed e-textiles curriculum. Findings indicated that his instruction during e-textiles classes was different in terms of classroom discourse opportunities and engagement. Specifically, students taught in classes with e-textile were afforded more opportunities to engage their own questions with the teacher and engage on a more personal level with him.

Volume 20  Issue 1  

Preservice Science Teachers’ Beliefs About Computational Thinking Following a Curricular Module Within an Elementary Science Methods Course

by J. Randy McGinnis, Emily Hestness, Kelly Mills, Diane Jass Ketelhut, Lautaro Cabrera & Hannoori Jeong
Full Article PDF Show Abstract

The authors describe their study of a curricular module on computational thinking (CT) implemented within an elementary science methods course and reported insights on preservice science teachers’ (PSTs’) beliefs about CT integration. The research question was, “Following participation in a curricular module on CT, what is the nature of PSTs’ beliefs about CT integration in their elementary science classrooms?” The authors designed and implemented a three-class-session CT module within an undergraduate elementary science methods course. They observed and collected field notes on PSTs’ (N = 39) participation in the module, along with class artifacts. They examined the data to gain insight into PSTs’ perceptions of CT integration in elementary science education, its feasibility, and its value for their own teaching practice. They found that PSTs overwhelmingly supported the pedagogical innovation of integrating CT in their science teaching; they appreciated that CT modernized and made science education engaging for young learners; and, they generally believed that CT integration supported the implementation of what they understood as good science teaching practice. However, the PSTs believed they would face a variety of challenges in their efforts to integrate CT into their science teaching. Implications for CT teacher education are discussed.

Volume 19  Issue 4  

Using Virtual Reality to Augment Museum-Based Field Trips in a Preservice Elementary Science Methods Course

by Jason R. Harron, Anthony J. Petrosino & Sarah Jenevein
Full Article PDF Show Abstract

Positioned in the context of experiential learning, this paper reports findings of a virtual reality field trip (VRFT) in conjunction with an in-person field trip involving preservice teachers in an elementary science methods course to a local natural history museum. Findings included that virtual reality (VR) is best used after a field trip to encourage student recall of the experience, but only when done for a limited time to avoid VR fatigue. The types of experiences that preservice teachers thought VR would be good for in their science classrooms included the ability to visit either inaccessible or unsafe locations, to explore scales of size that are either too big or too small, and to witness different eras or events at varying temporal scales. Furthermore, this study uncovered potential equity issues related to VRFTs being seen as a viable alternative if students could not afford to go on field trips. Further research needs to be conducted to better understand the impact of VRFTs on student learning outcomes and take advantage of recent improvements in VR technology.

Volume 19  Issue 4  

Robotics Integration for Learning With Technology

by Jiangmei Yuan, ChanMin Kim, Rogers Hill & Dongho Kim
Full Article PDF Show Abstract

This qualitative study examined how preservice elementary teachers integrated robotics into science, technology, engineering, and mathematics (STEM) lesson designs and why they designed their lessons in a particular way. Participants’ lesson designs were collected, and semistructured interviews were conducted. The authors analyzed lesson designs to examine how participants integrated robotics into their lesson designs and interviews to explore why they designed their lessons in a particular way. Our findings suggest that, in general, preservice elementary teachers designed lessons for student learning with technology. Only one lesson was for student learning from technology. The rest were for student learning with technology or applied a mixed approach that supported both student learning with and from technology. Preservice teachers’ lesson designs seemed to have been influenced by their pleasant struggles during robot design, collaboration experience, robotics integration knowledge, STEM content knowledge, and conception of STEM integration. Implications for teacher education are presented.